Skip to main content

Advertisement

Log in

Role of nanostructures on SOFC performance at reduced temperatures

  • Low-Temperature Solid-Oxide Fuel Cells
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Solid-oxide fuel cells (SOFCs) are an energy conversion technology with unique potential to have the highest energy conversion efficiency with the least environmental impact, as well as broad fuel flexibility from renewable to conventional fuels. Lowering the SOFC operating temperature will further lower system and operational costs, increase long-term durability, and allow more rapid start-up, providing feasibility for load following and transportation applications. Unfortunately, at reduced temperatures, the thermally activated nature of ionic conduction and electrochemical reactions increase polarization resistances, thus decreasing cell and system performance. However, lower operating temperatures also create the opportunity to employ nanostructured materials with higher surface area-to-volume ratios and greater interphase and interfacial regions, which can greatly enhance electrochemical performance. Here, we review recent progress in the development of various nanostructured electrodes and electrolytes and discuss their effects on the enhancement of the electrocatalytic activity of oxygen reduction and fuel oxidation, as well as oxygen-ion conduction, in order to achieve high-performance low-temperature SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. E.D. Wachsman, K.T. Lee, Science 334, 935 (2011).

    Google Scholar 

  2. B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001).

    Google Scholar 

  3. E.P. Murray, T. Tsai, S.A. Barnett, Nature 400, 649 (1999).

    Google Scholar 

  4. S.D. Park, J.M. Vohs, R.J. Gorte, Nature 404, 265 (2000).

    Google Scholar 

  5. Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Science 312, 254 (2006).

    Google Scholar 

  6. L. Yang, S.Z. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, M.L. Liu, Science 326, 126 (2009).

    Google Scholar 

  7. K.T. Lee, C.M. Gore, E.D. Wachsman, J. Mater. Chem. 22, 22405 (2012).

    Google Scholar 

  8. C.S. Song, Catal. Today 77, 17 (2002).

    Google Scholar 

  9. K.T. Lee, H.S. Yoon, E.D. Wachsman, J. Mater. Res. 27, 2063 (2012).

    Google Scholar 

  10. E.D. Wachsman, C.A. Marlowe, K.T. Lee, Energy Environ. Sci. 5, 5498 (2012).

    Google Scholar 

  11. D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Chem. Soc. Rev. 37, 1568 (2008).

    Google Scholar 

  12. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005).

    Google Scholar 

  13. S.B. Adler, Chem. Rev. 104, 4791 (2004).

    Google Scholar 

  14. C.R. Xia, W. Rauch, F.L. Chen, M.L. Liu, Solid State Ionics 149, 11 (2002).

    Google Scholar 

  15. K. Sasaki, J. Tamura, H. Hosoda, T.N. Lan, K. Yasumoto, M. Dokiya, Solid State Ionics 148, 551 (2002).

    Google Scholar 

  16. T. Ishihara, T. Kudo, H. Matsuda, Y. Takita, J. Electrochem. Soc. 142, 1519 (1995).

    Google Scholar 

  17. M. Mogensen, S. Skaarup, Solid State Ionics 86–8, 1151 (1996).

    Google Scholar 

  18. M. Godickemeier, K. Sasaki, L.J. Gauckler, I. Riess, Solid State Ionics 86–8, 691 (1996).

    Google Scholar 

  19. N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993).

    Google Scholar 

  20. E.P. Murray, T. Tsai, S.A. Barnett, Solid State Ionics 110, 235 (1998).

    Google Scholar 

  21. S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Hong, Y.S. Yoo, H.C. Lim, J. Power Sources 106, 160 (2002).

    Google Scholar 

  22. S.P. Jiang, J. Power Sources 124, 390 (2003).

    Google Scholar 

  23. N.P. Brandon, S. Skinner, B.C.H. Steele, Annu. Rev. Mater. Res. 33, 183 (2003).

    Google Scholar 

  24. C.W. Tanner, K.Z. Fung, A.V. Virkar, J. Electrochem. Soc. 144, 21 (1997).

    Google Scholar 

  25. E.P. Murray, S.A. Barnett, Solid State Ionics 143, 265 (2001).

    Google Scholar 

  26. K.T. Lee, D.W. Jung, H.S. Yoon, A.A. Lidie, M.A. Camaratta, E.D. Wachsman, J. Power Sources 220, 324 (2012).

    Google Scholar 

  27. F. Deganello, V. Esposito, M. Miyayama, E. Traversa, J. Electrochem. Soc. 154, A89 (2007).

    Google Scholar 

  28. F. Han, R. Muecke, T. Van Gestel, A. Leonide, N.H. Menzler, H.P. Buchkremer, D. Stover, J. Power Sources 218, 157 (2012).

    Google Scholar 

  29. Z.P. Shao, S.M. Haile, Nature 431, 170 (2004).

    Google Scholar 

  30. A. Petric, P. Huang, F. Tietz, Solid State Ionics 135, 719 (2000).

    Google Scholar 

  31. A. Mai, M. Becker, W. Assenmacher, F. Tietz, D. Hathiramani, E. Ivers-Tiffee, D. Stover, W. Mader, Solid State Ionics 177, 1965 (2006).

    Google Scholar 

  32. E. Bucher, A. Egger, G.B. Caraman, W. Sitte, J. Electrochem. Soc. 155, B1218 (2008).

    Google Scholar 

  33. D. Oh, D. Gostovic, E.D. Wachsman, J. Mater. Res. 27, 1992 (2012).

    Google Scholar 

  34. X.J. Chen, S.H. Chan, K.A. Khor, Electrochim. Acta 49, 1851 (2004).

    Google Scholar 

  35. V.M. Janardhanan, V. Heuveline, O. Deutschmann, J. Power Sources 178, 368 (2008).

    Google Scholar 

  36. W. Zhu, D. Ding, C. Xia, Electrochem. Solid-State Lett. 11, B83 (2008).

    Google Scholar 

  37. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, G.J. Exarhos, Mater. Lett. 10, 6 (1990).

    Google Scholar 

  38. S.G. Huang, C.Q. Peng, Z. Zong, J. Power Sources 176, 102 (2008).

    Google Scholar 

  39. K.T. Lee, B.W. Lee, B.A. Camaratta, E.D. Wachsman, RSC Adv. 3, 19866 (2013).

    Google Scholar 

  40. W.S. Jang, S.H. Hyun, S.G. Kim, J. Mater. Sci. 37, 2535 (2002).

    Google Scholar 

  41. Y. Zhen, S.P. Jiang, J. Power Sources 180, 695 (2008).

    Google Scholar 

  42. K. Sato, T. Kinoshita, H. Abe, M. Naito, J. Ceram. Soc. Jpn. 117, 1186 (2009).

    Google Scholar 

  43. Q.A. Zhen, G.M. Kale, G. Shi, R. Li, W.M. He, J.Q. Liu, Solid State Ionics 176, 2727 (2005).

    Google Scholar 

  44. K.T. Lee, D.W. Jung, M.A. Camaratta, H.S. Yoon, J.S. Ahn, E.D. Wachsman J. Power Sources 205, 122 (2012).

  45. K.T. Lee, A.A. Lidie, S.Y. Jeon, G.T. Hitz, S.J. Song, E.D. Wachsman, J. Mater. Chem. A 1, 6199 (2013).

    Google Scholar 

  46. A. Hagiwara, N. Hobara, K. Takizawa, K. Sato, H. Abe, M. Naito, Solid State Ionics 178, 1123 (2007).

    Google Scholar 

  47. L. Baque, A. Caneiro, M.S. Moreno, A. Serquis, Electrochem. Commun. 10, 1905 (2008).

    Google Scholar 

  48. S.P. Jiang, Mater. Sci. Eng. A 418, 199 (2006).

    Google Scholar 

  49. J.M. Vohs, R.J. Gorte, Adv. Mater. 21, 943 (2009).

    Google Scholar 

  50. Z.Y. Jiang, C.R. Xia, F.L. Chen, Electrochim. Acta 55, 3595 (2010).

    Google Scholar 

  51. S.P. Jiang, Int. J. Hydrogen Energy 37, 449 (2012).

    Google Scholar 

  52. T.Z. Sholklapper, C. Lu, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, Electrochem. Solid-State Lett. 9, A376 (2006).

    Google Scholar 

  53. T.Z. Sholklapper, H. Kurokawa, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, Nano Lett. 7, 2136 (2007).

    Google Scholar 

  54. F. Zhao, R. Peng, C. Xia, Mater. Res. Bull. 43, 370 (2008).

    Google Scholar 

  55. M.E. Lynch, L. Yang, W.T. Qin, J.J. Choi, M.F. Liu, K. Blinn, M.L. Liu, Energy Environ. Sci. 4, 2249 (2011).

    Google Scholar 

  56. C.C. Kan, H.H. Kan, F.M. Van Assche, E.N. Armstrong, E.D. Wachsman, J. Electrochem. Soc. 155, B985 (2008).

    Google Scholar 

  57. C.C. Kan, E.D. Wachsman, Solid State Ionics 181, 338 (2010).

    Google Scholar 

  58. E.N. Armstrong, K.L. Duncan, D.J. Oh, J.F. Weaver, E.D. Wachsman, J. Electrochem. Soc. 158, B492 (2011).

    Google Scholar 

  59. E.N. Armstrong, K.L. Duncan, E.D. Wachsman, Phys. Chem. Chem. Phys. 15, 2298 (2013).

    Google Scholar 

  60. M.J. Zhi, N. Mariani, R. Gemmen, K. Gerdes, N.Q. Wu, Energy Environ. Sci. 4, 417 (2011).

    Google Scholar 

  61. M. Zhi, S. Lee, N. Miller, N.H. Menzler, N. Wu, Energy Environ. Sci. 5, 7066 (2012).

    Google Scholar 

  62. J. Sacanell, A.G. Leyva, M.G. Bellino, D.G. Lamas, J. Power Sources 195, 1786 (2010).

    Google Scholar 

  63. J. Sacanell, M.G. Bellino, D.G. Lamas, A.G. Leyva, Physica B 398, 341 (2007).

    Google Scholar 

  64. M.G. Bellino, J.G. Sacanell, D.G. Lamas, A.G. Leyva, N.E. Walsoe de Reca, J. Am. Chem. Soc. 129, 3066 (2007).

    Google Scholar 

  65. Y. Gong, D. Palacio, X. Song, R.L. Patel, X. Liang, X. Zhao, J.B. Goodenough, K. Huang, Nano Lett. 13, 4340 (2013).

    Google Scholar 

  66. C.W. Sun, U. Stimming, J. Power Sources 171, 247 (2007).

    Google Scholar 

  67. S. Zha, Z. Cheng, M. Liu, J. Electrochem. Soc. 154, B201 (2007).

    Google Scholar 

  68. K. Eguchi, H. Kojo, T. Takeguchi, R. Kikuchi, K. Sasaki, Solid State Ionics 152, 411 (2002).

    Google Scholar 

  69. H. Kurokawa, T.Z. Sholklapper, C.P. Jacobson, L.C. De Jonghe, S.J. Visco, Electrochem. Solid-State Lett. 10, B135 (2007).

    Google Scholar 

  70. S. Park, R.J. Gorte, J.M. Vohs, J. Electrochem. Soc. 148, A443 (2001).

    Google Scholar 

  71. M.D. Gross, J.M. Vohs, R.J. Gorte, J. Mater. Chem. 17, 3071 (2007).

    Google Scholar 

  72. J. Pena-Martinez, D. Marrero-Lopez, J.C. Ruiz-Morales, C. Savaniu, P. Nunez, J.T.S. Irvine, Chem. Mater. 18, 1001 (2006).

    Google Scholar 

  73. Q.X. Fu, F. Tietz, D. Stover, J. Electrochem. Soc. 153, D74 (2006).

    Google Scholar 

  74. S. Shen, L. Guo, H. Liu, Int. J. Hydrogen Energy 38, 1967 (2013).

    Google Scholar 

  75. T. Ishihara, T.H. Shin, P. Vanalabhpatana, K. Yonemoto, M. Matsuka, Electrochem. Solid-State Lett. 13, B95 (2010).

    Google Scholar 

  76. S.P. Jiang, X.J. Chen, S.H. Chan, J.T. Kwok, K.A. Khor, Solid State Ionics 177, 149 (2006).

    Google Scholar 

  77. S.P. Jiang, L. Liu, K.P. Ong, P. Wu, H. Li, H. Pu, J. Power Sources 176, 82 (2008).

    Google Scholar 

  78. T.H. Shin, Y. Okamoto, S. Ida, T. Ishihara, Chem. Eur. J. 18, 11695 (2012).

    Google Scholar 

  79. A.M. Hussain, J.V.T. Hogh, W. Zhang, P. Blennow, N. Bonanos, B.A. Boukamp, Electrochim. Acta 113, 635 (2013).

    Google Scholar 

  80. S.P. Jiang, X.J. Chen, S.H. Chan, J.T. Kwok, J. Electrochem. Soc. 153, A850 (2006).

    Google Scholar 

  81. S.P. Jiang, Y. Ye, T. He, S.B. Ho, J. Power Sources 185, 179 (2008).

    Google Scholar 

  82. J.S. Ahn, H. Yoon, K.T. Lee, M.A. Camaratta, E.D. Wachsman, Fuel Cells 9, 643 (2009).

    Google Scholar 

  83. N. Ai, Z. Lu, K.F. Chen, X.Q. Huang, X.B. Du, W.H. Su, J. Power Sources 171, 489 (2007).

    Google Scholar 

  84. R.E. Williford, L.A. Chick, G.D. Maupin, S.P. Simner, J.W. Stevenson, J. Electrochem. Soc. 150, A1067 (2003).

    Google Scholar 

  85. A.A.E. Hassan, N.H. Menzler, G. Blass, M.E. Ali, H.P. Buchkremer, D. Stover, Adv. Eng. Mater. 4, 125 (2002).

    Google Scholar 

  86. J.R. Kong, K.N. Sun, D.R. Zhou, N.Q. Zhang, J. Mu, J.S. Qiao, J. Power Sources 166, 337 (2007).

    Google Scholar 

  87. K.T. Lee, N.J. Vito, H.S. Yoon, E.D. Wachsman, J. Electrochem. Soc. 159, F187 (2012).

    Google Scholar 

  88. K.T. Lee, N.J. Vito, E.D. Wachsman, J. Power Sources 228, 220 (2013).

    Google Scholar 

  89. K.T. Lee, H.S. Yoon, J.S. Ahn, E.D. Wachsman, J. Mater. Chem. 22, 17113 (2012).

    Google Scholar 

  90. Z.L. Zhan, S.A. Barnett, Science 308, 844 (2005).

    Google Scholar 

  91. W. Wang, S.P. Jiang, A.I.Y. Tok, L. Luo, J. Power Sources 159, 68 (2006).

    Google Scholar 

  92. A. Babaei, S.P. Jiang, J. Li, J. Electrochem. Soc. 156, B1022 (2009).

    Google Scholar 

  93. T. Ishihara, H. Matsuda, Y. Takita, Solid State Ionics 79, 147 (1995).

    Google Scholar 

  94. K.Q. Huang, R.S. Tichy, J.B. Goodenough, J. Am. Ceram. Soc. 81, 2565 (1998).

    Google Scholar 

  95. Z. Zhan, D.M. Bierschenk, J.S. Cronin, S.A. Barnett, Energy Environ. Sci. 4, 3951 (2011).

    Google Scholar 

  96. D. Beckel, A. Bieberle-Huetter, A. Harvey, A. Infortuna, U.P. Muecke, M. Prestat, J.L.M. Rupp, L.J. Gauckler, J. Power Sources 173, 325 (2007).

    Google Scholar 

  97. Y. Matsuzaki, M. Hishinuma, I. Yasuda, Thin Solid Films 340, 72 (1999).

    Google Scholar 

  98. S.Y. Wang, W. Wang, Q.C. Liu, M. Zhang, Y.T. Qian, Solid State Ionics 133, 211 (2000).

    Google Scholar 

  99. J.H. Shim, C.-C. Chao, H. Huang, F.B. Prinz, Chem. Mater. 19, 3850 (2007).

    Google Scholar 

  100. J.S. Park, Y.B. Kim, J.H. Shim, S. Kang, T.M. Guer, F.B. Prinz, Chem. Mater. 22, 5366 (2010).

    Google Scholar 

  101. J.S. Park, T.P. Holme, J.H. Shim, F.B. Prinz, MRS Commun. 2, 107 (2012).

    Google Scholar 

  102. C.-C. Chao, C.-M. Hsu, Y. Cui, F.B. Prinz, ACS Nano 5, 5692 (2011).

    Google Scholar 

  103. C.-C. Chao, J.S. Park, X. Tian, J.H. Shim, T.M. Guer, F.B. Prinz, ACS Nano 7, 2186 (2013).

    Google Scholar 

  104. J.H. Shim, S. Kang, S.-W. Cha, W. Lee, Y.B. Kim, J.S. Park, T.M. Guer, F.B. Prinz, C.-C. Chao, J. An, J. Mater. Chem. A 1, 12695 (2013).

    Google Scholar 

  105. J. An, Y.-B. Kim, J. Park, T.M. Guer, F.B. Prinz, Nano Lett. 13, 4551 (2013).

    Google Scholar 

  106. J.H. Joo, G.M. Choi, Solid State Ionics 177, 1053 (2006).

    Google Scholar 

  107. U.P. Muecke, D. Beckel, A. Bernard, A. Bieberle-Huetter, S. Graf, A. Infortuna, P. Mueller, J.L.M. Rupp, J. Schneider, L.J. Gauckler, Adv. Funct. Mater. 18, 3158 (2008).

    Google Scholar 

  108. C.-W. Kwon, J.-W. Son, J.-H. Lee, H.-M. Kim, H.-W. Lee, K.-B. Kim, Adv. Funct. Mater. 21, 1154 (2011).

    Google Scholar 

  109. K.-R. Lee, J.-H. Lee, H.-I. Yoo, Phys. Chem. Chem. Phys. 15, 15632 (2013).

    Google Scholar 

  110. J.L. Hertz, H.L. Tuller, J. Electroceram. 13, 663 (2004).

    Google Scholar 

  111. S. Rey-Mermet, Y. Yan, C. Sandu, G. Deng, P. Muralt, Thin Solid Films 518, 4743 (2010).

    Google Scholar 

  112. K. Kerman, B.-K. Lai, S. Ramanathan, Adv. Energy Mater. 2, 656 (2012).

    Google Scholar 

  113. A. Evans, A. Bieberle-Huetter, J.L.M. Rupp, L.J. Gauckler, J. Power Sources 194, 119 (2009).

    Google Scholar 

  114. J. Fleig, H.L. Tuller, J. Maier, Solid State Ionics 174, 261 (2004).

    Google Scholar 

  115. M. Aoki, Y.M. Chiang, I. Kosacki, I.J.R. Lee, H. Tuller, Y.P. Liu, J. Am. Ceram. Soc. 79, 1169 (1996).

    Google Scholar 

  116. S.P.S. Badwal, S. Rajendran, Solid State Ionics 70, 83 (1994).

    Google Scholar 

  117. A. Bernasik, K. Kowalski, A. Sadowski, J. Phys. Chem. Solids 63, 233 (2002).

    Google Scholar 

  118. R. Gerhardt, A.S. Nowick, M.E. Mochel, I. Dumler, J. Am. Ceram. Soc. 69, 647 (1986).

    Google Scholar 

  119. H.L. Tuller, Solid State Ionics 131, 143 (2000).

    Google Scholar 

  120. K.L. Kliewer, J.S. Koehler, Phys. Rev. 140, 1226 (1965).

    Google Scholar 

  121. J. Maier, Prog. Solid State Chem. 23, 171 (1995).

    Google Scholar 

  122. J. Maier, Solid State Ionics 23, 59 (1987).

    Google Scholar 

  123. J. Maier, Phys. Chem. Chem. Phys. 11, 3011 (2009).

    Google Scholar 

  124. A.L. Despotuli, V.I. Nikolaichik, Solid State Ionics 60, 275 (1993).

    Google Scholar 

  125. J. Schoonman, Solid State Ionics 157, 319 (2003).

    Google Scholar 

  126. J. Maier, Solid State Ionics 157, 327 (2003).

    Google Scholar 

  127. J. Maier, Nat. Mater. 4, 805 (2005).

    Google Scholar 

  128. J. Maier, Chem. Mater. 26, 348 (2014).

    Google Scholar 

  129. C. Leon, J. Santamaria, B.A. Boukamp, MRS Bull. 38, 1056 (2013).

    Google Scholar 

  130. P. Mondal, A. Klein, W. Jaegermann, H. Hahn, Solid State Ionics 118, 331 (1999).

    Google Scholar 

  131. S.S. Jiang, W.A. Schulze, V.R.W. Amarakoon, G.C. Stangle, J. Mater. Res. 12, 2374 (1997).

    Google Scholar 

  132. X. Guo, E. Vasco, S.B. Mi, K. Szot, E. Wachsman, R. Waser, Acta Mater. 53, 5161 (2005).

    Google Scholar 

  133. I. Kosacki, T. Suzuki, V. Petrovsky, H.U. Anderson, Solid State Ionics 136, 1225 (2000).

    Google Scholar 

  134. I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowndes, Solid State Ionics 176, 1319 (2005).

    Google Scholar 

  135. S. Azad, O.A. Marina, C.M. Wang, L. Saraf, V. Shutthanandan, D.E. McCready, A. El-Azab, J.E. Jaffe, M.H. Engelhard, C.H.F. Peden, S. Thevuthasan, Appl. Phys. Lett. 86, 131906 (2005).

    Google Scholar 

  136. A. Peters, C. Korte, D. Hesse, N. Zakharov, J. Janek, Solid State Ionics 178, 67 (2007).

    Google Scholar 

  137. G. Knoner, K. Reimann, R. Rower, U. Sodervall, H.E. Schaefer, Proc. Natl. Acad. Sci. U.S.A. 100, 3870 (2003).

    Google Scholar 

  138. R.A. De Souza, M.J. Pietrowski, U. Anselmi-Tamburini, S. Kim, Z.A. Munir, M. Martin, Phys. Chem. Chem. Phys. 10, 2067 (2008).

    Google Scholar 

  139. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Science 321, 676 (2008).

    Google Scholar 

  140. X. Guo, Science 324, 465 (2009).

    Google Scholar 

  141. R.A. De Souza, A. Ramadan, S. Hoerner, Energy Environ. Sci. 5, 5445 (2012).

    Google Scholar 

  142. B. Zhu, Int. J. Energy Res. 33, 1126 (2009).

    Google Scholar 

  143. Y. Zhao, C. Xia, L. Jia, Z. Wang, H. Li, J. Yu, Y. Li, Int. J. Hydrogen Energy 38, 16498 (2013).

    Google Scholar 

  144. R. Chockalingam, V.R.W. Amarakoon, H. Giesche, J. Eur. Ceram. Soc. 28, 959 (2008).

    Google Scholar 

  145. Q.X. Fu, S.W. Zha, W. Zhang, D.K. Peng, G.Y. Meng, B. Zhu, J. Power Sources 104, 73 (2002).

    Google Scholar 

  146. G.Y. Meng, Q.X. Fu, S.W. Zha, C.R. Xia, X.Q. Liu, D.K. Peng, Solid State Ionics 148, 533 (2002).

    Google Scholar 

  147. B. Zhu, X.G. Liu, P. Zhou, X.T. Yang, Z.G. Zhu, W. Zhu, Electrochem. Commun. 3, 566 (2001).

    Google Scholar 

  148. S.-S. Baek, N. Lee, B.-K. Kim, H. Chang, S.-J. Song, J.-Y. Park, Int. J. Hydrogen Energy 37, 16823 (2012).

    Google Scholar 

  149. X. Wang, Y. Ma, R. Raza, M. Muhammed, B. Zhu, Electrochem. Commun. 10, 1617 (2008).

    Google Scholar 

  150. B. Zhu, S. Li, B.E. Mellander, Electrochem. Commun. 10, 302 (2008).

    Google Scholar 

  151. X. Wang, Y. Ma, S. Li, A.-H. Kashyout, B. Zhu, M. Muhammed, J. Power Sources 196, 2754 (2011).

    Google Scholar 

  152. Y. Ma, X. Wang, S. Li, M.S. Toprak, B. Zhu, M. Muhammed, Adv. Mater. 22, 1640 (2010).

    Google Scholar 

  153. C. Xia, Y. Li, Y. Tian, Q. Liu, Z. Wang, L. Jia, Y. Zhao, Y. Li, J. Power Sources 195, 3149 (2010).

    Google Scholar 

  154. C. Xia, L. Li, Y. Tian, Q. Liu, Y. Zhao, L. Jia, Y. Li, J. Power Sources 188, 156 (2009).

    Google Scholar 

  155. Y. Zhao, C. Xia, Y. Wang, Z. Xu, Y. Li, Int. J. Hydrogen Energy 37, 8556 (2012).

    Google Scholar 

  156. D. Ding, B. Liu, Z. Zhu, S. Zhou, C. Xia, Solid State Ionics 179, 896 (2008).

    Google Scholar 

  157. J. Huang, Z. Gao, Z. Mao, Int. J. Hydrogen Energy 35, 4270 (2010).

    Google Scholar 

  158. R. Raza, X. Wang, Y. Ma, X. Liu, B. Zhu, Int. J. Hydrogen Energy 35, 2684 (2010).

    Google Scholar 

  159. A.S.V. Ferreira, C.M.C. Soares, F.M.H.L.R. Figueiredo, F.M.B. Marques, Int. J. Hydrogen Energy 36, 3704 (2011).

    Google Scholar 

  160. R. Chockalingam, S. Basu, Int. J. Hydrogen Energy 36, 14977 (2011).

    Google Scholar 

  161. M.A. Khan, R. Raza, R.B. Lima, M.A. Chaudhry, E. Ahmed, G. Abbas, Int. J. Hydrogen Energy 38, 16524 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Taek Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.T., Wachsman, E.D. Role of nanostructures on SOFC performance at reduced temperatures. MRS Bulletin 39, 783–791 (2014). https://doi.org/10.1557/mrs.2014.193

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.193

Navigation