Skip to main content

Advertisement

Log in

Hydrogen technologies for energy storage: A perspective

  • Perspective
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2020

This article has been updated

Abstract

Hydrogen is a versatile energy storage medium with significant potential for integration into the modernized grid.

Advanced materials for hydrogen energy storage technologies including adsorbents, metal hydrides, and chemical carriers play a key role in bringing hydrogen to its full potential.

The U.S. Department of Energy Hydrogen and Fuel Cell Technologies Office leads a portfolio of hydrogen and fuel cell research, development, and demonstration activities, including hydrogen energy storage to enable resiliency and optimal use of diverse domestic energy resources.

Today, the technology around generating and storing efficient and sustainable energy is rapidly evolving and hydrogen technologies offer versatile options. This perspective provides an overview of the U.S. Department of Energy's (DOE) Hydrogen and Fuel Cell Technologies Office's R&D activities in hydrogen storage technologies within the Office of Energy Efficiency and Renewable Energy, with a focus on their relevance and adaptation to the evolving energy storage needs of a modernized grid, as well as discussion of identified R&D needs and challenges. The role of advanced materials research programs focused on addressing energy storage challenges is framed in the context of DOE's H2@Scale initiative, which will enable innovations to generate cost-competitive hydrogen as an energy carrier, coupling renewables, as well as nuclear, fossil fuels, and the grid, to enhance the economics of both baseload power plants and intermittent solar and wind, to enhance resiliency and avoid curtailment. Continued growth and engagement of domestic and international policy stakeholders, industry partnerships, and economic coalitions supports a positive future outlook for hydrogen in the global energy system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

Change history

References

  1. U.S. Department of Energy, Energy Information Agency: Annual Energy Outlook 2020 with Projections to 2050. Available at: https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf (accessed July 6, 2020).

  2. Wood Mackenzie Power & Renewables/U.S. Energy Storage Association: U.S. Energy Storage Monitor, Q2 2020 Executive Summary, June 2020.

  3. Verma H., Gambhir J., and Goyal S.: Energy storage: A review. IJITEE 3, 63–69 (2013).

    Google Scholar 

  4. Trahey L., Brushett F.R., Balsara N.P., Ceder G., Cheng L., Chiang Y., Hahn N.T., Ingram B.J., Minteer S.D., Moore J.S., Mueller K.T., Nazar L.F., Persson K.A., Siegel D.J., Xu K., Zavadil K.R., Srinivasan V., and Crabtree G.W.: Energy storage emerging: A perspective from the joint center for energy storage research. Proc. Natl. Acad. Sci. 117, 12550–12557 (2020). doi:10.1073/pnas.1821672117

    Article  CAS  Google Scholar 

  5. Karatairi E. and Sartori S.: Reviving hydrogen as an energy carrier. MRS Bull. 45, 424–426 (2020). doi:10.1557/mrs.2020.157

    Article  Google Scholar 

  6. U.S. Department of Energy, Energy Information Administration: Electric Power Monthly with Data for April 2019 (June 2019). Available at: https://www.eia.gov/todayinenergy/detail.php?id=39992 (accessed July 6, 2020).

  7. Staffell I., Scamman D., Abad A.V., Balcombe P., Dodds P.E., Ekins P., Shah N., and Ward K.R.: The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019). doi:10.1039/C8EE01157E

    Article  CAS  Google Scholar 

  8. Office of Energy Efficiency & Renewable Energy: Hydrogen Storage (2011). Available at: https://www.energy.gov/eere/fuelcells/hydrogen-storage (accessed November 9, 2020).

  9. Department of Energy Research and Innovation Act. H.R.589 — 115th Congress (2017–2018).

  10. U.S. Department of Energy: About the Energy Storage Grand Challenge (2020). Available at: https://www.energy.gov/energy-storage-grand-challenge/about-energy-storage-grand-challenge (accessed June 16, 2020).

  11. Pivovar B., Rustagi N., and Sutyapal S.: Hydrogen at scale (H2@scale): Key to a clean, economic, and sustainable energy system. Electrochem. Soc. Interface 27, 47–52 (2018). doi:10.1149/2.F04181if

    Article  CAS  Google Scholar 

  12. Walker S.B., Mukherjee U., Fowler M., and Elkamel A.: Benchmarking and selection of power-to-gas utilizing electrolytic hydrogen as an energy storage alternative. Int. J. Hydrogen Energy 41, 7717–7731 (2016). doi:10.1016/j.ijhydene.2015.09.008

    Article  CAS  Google Scholar 

  13. Valenti G.: Compendium of hydrogen energy. In Hydrogen Storage, Distribution and Infrastructure, Vol. 2, Gupta R.B., Basile A. and Nejat Veziroglu T., eds. (Woodhead Publishing, Cambridge, UK, 2016); p. 47. doi:10.1016/B978-1-78242-362-1.00002-X

    Google Scholar 

  14. Andersson J. and Gronkvist S.: Large-scale storage of hydrogen. Int. J. Hydrogen Energy 44, 11901–11919 (2019). doi:10.1016/j.ijhydene.2019.03.063

    Article  CAS  Google Scholar 

  15. HySTRA: Hydrogen Energy Supply Chain Pilot Project Between Australia and Japan. Available at: http://www.hystra.or.jp/en/project/ (accessed July 8, 2020).

  16. ACIL Allen Consulting for ARENA: Opportunities for Australia from Hydrogen Exports, ACIL Allen Consulting for ARENA, 2018, p. 48. Available at: https://arena.gov.au/assets/2018/08/opportunities-for-australia-from-hydrogen-exports.pdf (accessed August 11, 2020).

  17. Lemmon E.W., McLinden M.O., and Friend D.G.: Thermophysical properties of fluid systems. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom P.J. and Mallard W.G., eds. (National Institute of Standards and Technology, Gaithersburg, MD); p. 20899. Available at: doi:10.18434/T4D303 (accessed July 8, 2020).

  18. FIBA Technologies, Inc. Superjumbo Tube Trailers. Available at: https://www.fibatech.com/products/tube-trailers-and-skids/superjumbo-tube-trailers/ (accessed July 8, 2020).

  19. NPROXX. Hydrogen Storage for Filling Stations. Available at: https://www.nproxx.com/hydrogen-storage-transport/hydrogen-refuelling-stations/ (accessed July 7, 2020).

  20. Hexagon. Hydrogen Storage and Distribution–Lightweight High-Pressure Systems for Hydrogen Storage & Distribution. Available at: https://hexagongroup.com/solutions/storage-distribution/hydrogen/ (accessed July 7, 2020).

  21. Composite Advanced Technologies, LLC. Highway to Hydrogen. Available at: https://www.catecgases.com/hydrogen (accessed July 7, 2020).

  22. Lord A.S., Kobos P.H., and Borns D.J.: Geologic storage of hydrogen: Scaling up to meet city transportation demands. Int. J. Hydrogen Energy 39, 15570–15582 (2014). doi:10.1016/j.ijhydene.2014.07.121

    Article  CAS  Google Scholar 

  23. R.K. Ahluwalia, J-K Peng, H.S. Roh, D. Papadias. System Analysis of Physical and Materials-Based Hydrogen Storage, 2019 Annual Progress Report to the DOE Hydrogen and Fuel Cells Program. Available at: https://www.hydrogen.energy.gov/pdfs/progress19/h2f_st001_ahluwalia_2019.pdf (accessed July 7, 2020).

  24. Züttel A.: Hydrogen storage methods. Naturwissenschaften 91, 157–172 (2004). doi:10.1007/s00114-004-0516-x

    Article  Google Scholar 

  25. Hirscher M., Yartys V.A., Baricco M., Bellosta von Colbe J., Blanchard D., Bowman R.C., Broom D.P., Buckley C.E., Chang F., Chen P., Whan Cho Y., Crivello J., Cuevas F., David W.I.F., de Jongh P.E., Denys B.V., Dornheim M., Felderhoff M., Filinchuk Y., Froudakis G.E., Grant D.M., Gray E.M., Hauback B.C., He T., Humphries T.D., Jensen T.R., Kim S., Kojima Y., Latroche M., Li H., Lototskyy M.V., Makepeace J.W., Møller K.T., Naheed L., Ngene P., Noréus D., Nygård M.M., Orimo S., Paskevicius M., Pasquini L., Ravnsbæk D.B., Sofianos M.V., Udovic T.J., Vegge T., Walker G.S., Webb C.J., Weidenthaler C., and Zlotea C.: Materials for hydrogen-based energy storage–Past, recent progress and future outlook. J. Alloys Compd. 827, 153548 (2020). doi:10.1016/j.jallcom.2019.153548.

    Article  CAS  Google Scholar 

  26. U.S. Department of Energy: Hydrogen Materials Advanced Research Consortium website: https://www.hymarc.org/ (accessed July 9, 2020).

  27. U.S. Department of Energy: DOE Hydrogen Carriers Workshop: Novel Pathways for Optimized Hydrogen Transport and Stationary Storage (2019) https://www.energy.gov/eere/fuelcells/doe-hydrogen-carriers-workshop-novel-pathways-optimized-hydrogen-transport-and (accessed July 9, 2020).

  28. He T., Pachfule P., Wu H., Xu Q., and Chen P.: Hydrogen carriers. Nat. Rev. Mater. 1, 16059 (2016). doi:10.1038/natrevmats.2016.59

    Article  CAS  Google Scholar 

  29. Mustafa A., Lougou B.G., Shuai Y., Wang Z., and Tan H.: Current technology development for CO2 utilization into solar fuels and chemicals: A review. J. Energy Chem. 49, 96–123 (2020). doi:10.1016/j.jechem.2020.01.023

    Article  Google Scholar 

  30. Crabtree R.H.: Hydrogen storage in liquid organic heterocycles. Energy Environ. Sci. 1, 134–138 (2008). doi:10.1039/b805644g

    Article  CAS  Google Scholar 

  31. Chiyoda Corporation: Performance of 10,000 Hours of Operation in Chiyoda's Demo Plant (2017). Available at: https://www.chiyodacorp.com/en/service/spera-hydrogen/demo-plant/ (accessed June 22, 2020).

  32. Chemical Engineering: Chiyoda and Mitsubishi Join Consortium for Singapore's Hydrogen Economy (2020). Available at: https://www.chemengonline.com/chiyoda-and-mitsubishi-join-consortium-for-singapores-hydrogen-economy/ (accessed June 22, 2020).

  33. Air Products and Chemicals: Breakthrough for Hydrogen Fuel Storage Is Like a “Liquid Battery” (2010). Available at: http://www.airproducts.com/Company/technology-partnerships/technology-licensing/energy/~/media/7256308528564099A26B4AF8F9B76112.pdf (accessed August 12, 2020).

  34. Preuster P., Papp C., and Wasserscheid P.: Liquid organic hydrogen carriers (LOHCs): Toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50, 74–85 (2017). doi:10.1021/acs.accounts.6b00474.

    Article  CAS  Google Scholar 

  35. Iguchi M., Himeda Y., Manaka Y., Matsuoka K., and Kawanami H.: Simple continuous high-pressure hydrogen production and separation system from formic acid under mild temperatures. ChemCatChem 8, 886 (2016). doi:10.1002/cctc.201501296

    Article  CAS  Google Scholar 

  36. Muller K., Brooks K., and Autrey T.: Releasing hydrogen at high pressures from liquid carriers: Aspects for the H2 delivery to fueling stations. Energy Fuels 32, 10008–100015 (2018). doi:10.1021/acs.energyfuels.8b01724.

    Article  CAS  Google Scholar 

  37. Autrey T., and Ahluwalia R. Hydrogen Carriers for Bulk Storage and Transport of Hydrogen. U.S. Department of Energy: Hydrogen Carriers for Bulk Storage and Transport of Hydrogen Webinar (2018). Available at: https://www.energy.gov/eere/fuelcells/downloads/hydrogen-carriers-bulk-storage-and-transport-hydrogen-webinar (accessed August 11, 2020).

  38. Muller K., Brooks K., and Autrey T.: Hydrogen storage in formic acid: A comparison of process options. Energy Fuels 31, 12603–12611 (2017). doi:10.1021/acs.energyfuels.7b02997

    Article  CAS  Google Scholar 

  39. Sandrock G.: A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloys Compd. 293–295, 877–888 (1999). doi:10.1016/S0925-8388(99)00384-9

    Article  Google Scholar 

  40. Ley M.B., Jepsen L.H., Lee Y., Cho Y.W. M J., von Colbe B., Dornheim M., Rokni M., Jensen J.O., Sloth M., Filinchuk Y., Jørgensen J.E., Besenbacher F., and Jensen T.R.: Complex hydrides for hydrogen storage–New perspectives. Mat. Today 17, 122–128 (2014). doi:10.1016/j.mattod.2014.02.013

    Article  CAS  Google Scholar 

  41. Orimo S., Nakamori Y., Eliseo J.R., Züttel A., and Jensen C.M.: Complex hydrides for energy storage. Chem. Rev. 107, 4111–4132 (2007). doi:10.1021/cr0501846

    Article  CAS  Google Scholar 

  42. Bellosta von Colbe J., Ares J., Barale J., Baricco M., Buckley C., Capurso G., Gallandat N., Grant D.M., Guzik M.N., Jacob I., Jensen E.H., Jensen T., Jepsen J., Klassen T., Lototskyy M.V., Manickam K., Montone A., Puszkiel J., Sartori S., Sheppard D.A., Stuart A., Walker G., Webb C.J., Yang H., Yartys V., Züttel A., and Dornheim M.: Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy 44, 7780–7808 (2019). doi:10.1016/j.ijhydene.2019.01.104

    Article  CAS  Google Scholar 

  43. Lototskyy M., Tolj I., Klochko Y., Davids M.W., Swanepoel D., and Linkov V.: Metal hydride hydrogen storage tank for fuel cell utility vehicles. Int. J. Hydrogen Energy 45, 7958–7967 (2020). doi:10.1016/j.ijhydene.2019.04.124.

    Article  CAS  Google Scholar 

  44. Allendorf M.D., Hulvey Z., Gennett T., Ahmed A., Autrey T., Camp J., Seon Cho E., Furukawa H., Haranczyk M., Head-Gordon M., Jeong S., Karkamkar A., Liu D., Long J.R., Meihaus K., Nayyar I.H., Nazarov R., Siegel D.J., Stavila V., Urban J.J., Veccham S.P., and Wood B.C.: An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy Environ. Sci. 11, 2784–1812 (2018). doi:10.1039/C8EE01085D

    Article  CAS  Google Scholar 

  45. Long J. and Gennett T.. HyMARC Core Activity: Sorbents, Presentation to the DOE Hydrogen and Fuel Cell Program's 2020 Annual Merit Review. Available at: https://www.hydrogen.energy.gov/pdfs/review20/st202_gennett_2020_p.pdf (accessed July 9, 2020).

  46. Zhang X., Lin R-B, Wang J., Wang B., Liang B., Yildirim T., Zhang J., Zhou W., and Chen B.: Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity. Adv. Mater. 32, 1907995 (2020). doi:10.1002/adma.201907995

    Article  CAS  Google Scholar 

  47. Chen Z., Li P., Anderson R., Wang X., Zhang X., Robison L., Redfern L.R., Moribe S., Islamoglu T., Gómez-Gualdrón D.A., Yildirim T., Stoddart J.F., and Farha O.K.: Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297–303 (2020). doi:10.1126/science.aaz8881

    Article  CAS  Google Scholar 

  48. Ahmed A., Yiyang L., Purewal J., Tran L.D., Wong-Foy A.G., Veenstra M., Matzger A.J., and Siegel D.J.: Balancing gravimetric and volumetric hydrogen density in MOFs. Energy Environ. Sci. 10, 2459–2471 (2017). doi:10.1039/C7EE02477K

    Article  CAS  Google Scholar 

  49. E4tech: The Fuel Cell Industry Review 2019. Available at http://www.fuelcellindustryreview.com/ (accessed August 11, 2020).

  50. California Fuel Cell Partnership: By the Numbers–FCEV Sales, FCEB, & Hydrogen Station. Available at: https://cafcp.org/by_the_numbers (accessed July 10, 2020).

  51. Executive Department, State of California. Executive Order B-48-18 2018. https://www.ca.gov/archive/gov39/2018/01/26/governor-brown-takes-action-to-increase-zero-emission-vehicles-fund-new-climate-investments/index.html (accessed September 18, 2020).

  52. Plug Power: Plug Power to Host Conference Call on June 23, 2020 to Discuss Recent Acquisition and Vertical Integration Activity. Available at: https://www.ir.plugpower.com/Press-Releases/Press-Release-Details/2020/Plug-Power-to-Host-Conference-Call-on-June-23-2020-to-Discuss-Recent-Acquisition-and-Vertical-Integration-Activity/default.aspx (accessed August 11, 2020).

  53. Hydrogen Council: The Hydrogen Council–An Introduction. Available at: https://hydrogencouncil.com/en/ (accessed August 11, 2020).

  54. Hydrogen Council Press Release: https://hydrogencouncil.com/en/new-hydrogen-council-launches-in-davos/ (accessed September 18, 2020).

  55. Center for Hydrogen Safety: Member Companies. Available at: https://www.aiche.org/chs/member-companies (accessed September 22, 2020).

  56. European Commission: A Hydrogen Strategy for a Climate Neutral Europe (2020). Available at: https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf (accessed August 11, 2020).

  57. International Energy Agency: The Future of Hydrogen (2019). Available at: https://www.iea.org/reports/the-future-of-hydrogen (accessed June 15, 2020).

  58. International Partnership for Hydrogen and Fuel Cells in the Economy. Available at: https://www.iphe.net (accessed August 12, 2020).

Download references

Acknowledgments

The authors wish to acknowledge their colleagues in the DOE Office of Energy Efficiency and Renewable Energy's Hydrogen and Fuel Cell Technologies Office, particularly Sunita Satyapal, Katie Randolph, David Peterson, Zeric Hulvey, Neha Rustagi, and Jesse Adams. Additionally, the authors acknowledge Tom Autrey at the Pacific National Laboratory and Rajesh Ahluwalia and Dionissios Papadias at Argonne National Laboratory for input and analysis on hydrogen carriers. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ned Stetson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stetson, N., Wieliczko, M. Hydrogen technologies for energy storage: A perspective. MRS Energy & Sustainability 7, 41 (2020). https://doi.org/10.1557/mre.2020.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2020.43

Keywords

Navigation