Skip to main content

Advertisement

Log in

On-grid batteries for large-scale energy storage: Challenges and opportunities for policy and technology

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

We offer a cross section of the numerous challenges andopportunities associated with the integration of large-scale battery?storage of renewable energy for the electric grid. Thesechallenges range beyond scientific and technical issues, to?policy issues, and even social challenges associated withthe transition to a more sustainable energy?landscape.

The commissioning on 1 December 2017 of the Tesla-Neoen 100 MW lithium-ion grid support battery at Neoen’s Hornsdale wind farm in South Australia, at the time the world’s largest, has focused the attention of policy makers and energy professionals on the broader prospects for renewable energy storage. An adequate and resilient infrastructure for large-scale grid scale and grid-edge renewable energy storage for electricity production and delivery, either localized or distributed, is a crucial requirement for transitioning to complete reliance on environmentally protective human energy systems. Its realization will require a strong synergy between technological advances in variable renewable energy storage and the governance policies that promote and support them. We examine how existing regulations and governance policies focusing on large-scale batteries have responded to this challenge around the world. We offer suggestions for potential regulatory and governance reform to encourage investment in large-scale battery storage infrastructure for renewable energy, enhance the strengths, and mitigate risks and weaknesses of battery systems, including facilitating the development of alternatives such as hybrid systems and eventually the uptake of hydrogen fuel and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  1. REN 21 GSR global status report: Available at: http://www.ren21.net/wp-content/uploads/2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf. pp137 et seqq (accessed July 26, 2018).

  2. Faunce T.A. and Charles C.: Nanotechnology, plasma, hydrogen from artificial photosynthesis and fuel cells: Powering the developing world to the sustainocene. In Nanotechnology Toward the Sustainocene, Faunce T.A., ed. (Pan Stanford, Singapore, 2015); pp. 241–253.

    Google Scholar 

  3. UN Paris Agreement, status of ratification update: Availabe at: http://unfccc.int/paris_agreement/items/9444.php (accessed November 6, 2017).

  4. International Energy Agency: Tracking clean energy report, 2017.

    Google Scholar 

  5. REN 21 global renewables report: Available at: http://www.ren21.net/future-of-renewables/global-futures-report/ (accessed July 26, 2018).

  6. International Energy Agency IEA: Technology Roadmap: Energy Storage (2014); p. 26.

    Google Scholar 

  7. Ferrey S.: Efficiency in the regulatory crucible: Navigating 21st century smart technology and power. Geo. Wash. J. Energy Environ. Law 1, 32 (2012).

    Google Scholar 

  8. International Energy Agency IEA: Tracking progress: Energy storage (2017). Available at: http://www.iea.org/etp/tracking2017/energystorage/ (accessed July 26, 2018).

    Google Scholar 

  9. IEA: Tracking clean energy progress 2017: Energy technology perspectives 2017 (2017). Available at: http://www.iea.org/etp/tracking2017/energystorage/ (accessed July 26, 2018).

    Google Scholar 

  10. IEA 2017 at 62: Aavailable at: http://www.iea.org/publications/freepublications/publication/TrackingCleanEnergyProgress2017.pdf (accessed July 26, 2018).

  11. Edenhofer O., Pichs-Madruga R., Sokona Y., et. al., eds.: Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2011).

    Google Scholar 

  12. Australian Energy Regulator: State of the Energy Market: May 2017 (2017); p. 158. Available at: https://www.aer.gov.au/publications/state-of-the-energy-market-reports/state-of-the-energy-market-may-2017 (accessed July 26, 2018).

    Google Scholar 

  13. Clean Energy Council: Clean Energy Report Australia, 2016. Available at: https://www.cleanenergycouncil.org.au/policy-advocacy/reports/clean-energy-australia-report.html (accessed July 26, 2018).

    Google Scholar 

  14. Australian Energy Market Operator (2017) South Australia: System Black Report (4th and Final), March 2017, 271pp. Available at: https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2017/Integrated-Final-Report-SA-Black-System-28-September-2016.pdf (accessed July 26, 2018).

    Google Scholar 

  15. Turnbull ignored advice that renewable energy not to blame for SA blackouts. Available at: https://www.theguardian.com/australia-news/2017/feb/13/turnbull-ignored-advice-that-renewable-energy-not-to-blame-for-sa-blackouts (accessed July 26, 2018).

  16. Lloyd G.: ‘Can South Australia battery power Elon musks’ Tesla dreams? Weekend Australia July 15, 2017.

    Google Scholar 

  17. Elon Musk’s giant lithium ion battery completed by Tesla in SA’s Mid North. Available at: http://www.abc.net.au/news/2017-11-23/worlds-most-powerful-lithium-ion-battery-finished-in-sa/9183868 (accessed July 26, 2018).

  18. Elon Musk Tesla to give solar panel batteries to SA homes. ABC news. Available at: http://www.abc.net.au/news/2018-02-04/elon-musk-tesla-to-give-solar-panels-batteries-to-sa-homes/9394352 (accessed July 26, 2018).

  19. Blood D.: Battery-based energy storage: The renewable power proliferation enabler. Renewable Energy Focus 17(6), 237–310 (2016).

    Google Scholar 

  20. DOE global energy storage database. Available at: http://energystorageexchange.org/projects/2217 (accessed July 26, 2018).

  21. Haegel N.M., Margolis R., Buonassisi T., Feldman D., Froitzheim A., Garabedian R., Green M., Glunz S., Henning H., Holder B., Kaizuka I., Kroposki B., Matsubara K., Niki S., Sakurai K., Schindler R.A., Tumas W., Weber E.R., Wilson G., Woodhouse M., and Kurtz S.: Terawatt-scale photovoltaics: Trajectories and challenges. Science 356(6334), 141–143 (April 14, 2017). Available at: https://doi.org/10.1126/science.aal1288.

    CAS  Google Scholar 

  22. Denholm P., O’Connell M., Brinkman G., and Jorgenson J.: Overgeneration from solar energy in California: A field guide to the duck chart” national renewable energy laboratory. Prepared under Task No. TM13 5020. Available at: https://www.nrel.gov/docs/fy16osti/65023.pdf (accessed July 26, 2018).

    Google Scholar 

  23. Hongwei Y., Duan J., Du W., Xue S., and Sun J.: China’s energy storage industry: Develop status, existing problems and countermeasures. Renewable Sustainable Energy Rev. 71, 767–784 (2017).

    Google Scholar 

  24. Ning Z., Lu X., McElroy M.B., Nielsen C.P., Chen X., Deng Y., and Kang C.: Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage. Appl. Energy 184, 987–994 (2016).

    Google Scholar 

  25. Kunisch H.J., Kramer K.G., and Dominik H.: Battery energy storage-another option for load-frequency-control and instantaneous reserve. IEEE Trans. Energy Convers. 1, 41–46 (1986).

    Google Scholar 

  26. Naser W.: New frequency regulation in Berlin. Elektrizitatswirtschaft 86, 532–535 (1987).

    Google Scholar 

  27. Sossan F. and Paolone M.: Integration and operation of utility-scale battery energy storage systems: The EPFL’s experience. IFAC-Papers on Line 49–27, 433–438 (2016).

    Google Scholar 

  28. Change B., Kim C., Kim T., Jeon W., Shin S., and Han H.: Demonstration study on the large-scale battery energy storage for renewables integration. Energy Environ. 26(1), 183–194 (2015).

    Google Scholar 

  29. Khald M. and Savkin A.: Model predictive control based efficient operation of battery energy storage system for primary frequency control. In 11th International Conference on Control Automation Robotics and Vision (2010); pp. 2248–2252.

    Google Scholar 

  30. Sigrist L., Lobato E., and Rouco L.: Energy storage systems providing primary reserve and peak shaving in small isolated power systems: An economic assessment. Int. J. Electr. Power Energy Syst. 53, 675–683 (2013).

    Google Scholar 

  31. Reihani E., Sepasi S., Roose L.R., and Matsura M.: Energy management at the distribution grid using a battery energy storage system (BESS). Electr. Power Energy Syst. 77, 337–344 (2016).

    Google Scholar 

  32. Stenzel P., Koj J.C., Schreiber A., Hennings W., and Zapp P.: Primary control provided by large-scale battery energy storage systems or fossil power plants in Germany and related environmental impacts. J. Energy Storage 8, 300–310 (2016).

    Google Scholar 

  33. Koj J.C., Stenzel P., Schreiber A., Hennings W., Zapp P., Wrede G., and Hahndorf I.: Life cycle assessment of primary control provision by battery storage systems and fossil power plants. Energy Procedia 73, 69–78 (2015).

    Google Scholar 

  34. Blomgren G.E.: The development and future of lithium ion batteries. J. Electrochem. Soc. 164(1), A5019–A5025 (2017).

    CAS  Google Scholar 

  35. Choi J.W. and Aurbach D.: Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. 1(1), 1–16 (2016).

    Google Scholar 

  36. Whittingham M.S.: Electrical energy storage and intercalation chemistry. Science 192(4244), 1126–1127 (1976).

    CAS  Google Scholar 

  37. Roth E.P. and Orendorff C.J.: How electrolytes influence battery safety. Electrochem. Soc. Interface 21(2), 45–49 (2012).

    CAS  Google Scholar 

  38. McCloskey B.D.: Expanding the Ragone plot: Pushing the limits of energy storage. J. Phys. Chem. Lett. 6, 3592–3593 (2015).

    CAS  Google Scholar 

  39. Iacopi F., Van Hove M., Charles M., and Endo K.: Electronics with wide bandgap materials: Towards greener, more efficient technologies. Mater. Res. Bull. 40(5), 390–395 (2015).

    CAS  Google Scholar 

  40. Kucinskis G., Bajars G., and Kleperis J.: Graphene in lithium ion battery cathode materials: A review. J. Power Sources 240, 66–79 (2013).

    CAS  Google Scholar 

  41. Yang T.C-J., Fiala P., Jeangros Q., and Ballif C.: High-bandgap Perovskite materials for multijunction solar cells. Nat. Energy 2, 861–868 (2017).

    Google Scholar 

  42. Bucur C.B., Gregory T., Oliver A.G., and Muldoon J.: Confession of a magnesium battery. J. Phys. Chem. Lett. 6, 3578–3591 (2015).

    CAS  Google Scholar 

  43. Jayaprakash N., Das S.K., and Archer L.A.: The rechargeable aluminum-ion battery. Chem. Commun. 47, 12610–12612 (2011).

    CAS  Google Scholar 

  44. Ji X., Lee K.T., and Nazar L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009); J. Zheng et al:. ACS Energy Lett. 2(5), 1105–1114 (2017).

    CAS  Google Scholar 

  45. Tulodziecki M., Leverick G.M., Amanchukwu C.V., Katayama Y., Kwabi D.G., Bardé F., Hammond P.T., and Shao-Horn Y.: The role of iodide in the formation of lithium hydroxide in lithium–oxygen batteries. Energy Environ. Sci. 8, 10 (2017).

    Google Scholar 

  46. Wang W., Luo Q., Li B., Wei X., Li L., and Yang Z.: Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23(8), 970–986 (2013).

    CAS  Google Scholar 

  47. Simon P. and Gogotsi Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).

    CAS  Google Scholar 

  48. Vetter J., Novak P., Wagner M.R., Veit C., Möller K-C., Besenhard J., Winter M., Wohlfahrt-Mehrens M., Vogler C., and Hammouce A.: Ageing mechanisms in lithium-ion batteries. J. Power Sources 147, 269–281 (2005).

    CAS  Google Scholar 

  49. Blomgren G.E.: J. Electrochem. Soc. 164(1), A5019–A5025 (2017).

    CAS  Google Scholar 

  50. Li L., Wang P., Chao K-H., Zhou Y., and Xie Y.: Remaining useful life prediction for lithium ion batteries Based on Gaussian processes mixture. PLoS One 11(9), e0163004 (2016).

    Google Scholar 

  51. AS/NZS 5139 electrical installations: Safety of battery systems for use with power conversion equipment, 2017. Available at: https://sapc.standards.org.au.

    Google Scholar 

  52. Zakeri B. and Syri S.: Electrical energy storage systems: A comparative life cycle cost analysis. Renewable Sustainable Energy Rev. 42, 569–596 (2015).

    Google Scholar 

  53. Wired: Can This Tesla Alum Build the World’s Greenest Battery? Available at: https://www.wired.com/story/ev-green-battery-factory-in-the-netherlands-competes-with-the-gigafactory/ (accessed July 26, 2018).

    Google Scholar 

  54. Goldman Sachs: Low Carbon Economy Report (Goldman Sachs, New York, 2016).

    Google Scholar 

  55. US Geological Survey: World cobalt reserves as of 2017, by country (in metric tons) (n.d.). Available at: https://www.statista.com/statistics/264930/global-cobalt-reserves/ (accessed July 26, 2018).

  56. Yanga Q., Geng Y., Dong H., Zhang J., Yue X., Sunf L., Lug X., and Chen Y.: Effect of environmental regulations on China’s graphite export. J. Clean. Prod. 161, 327–334 (2017).

    Google Scholar 

  57. US department of interior, US geological survey, mineral commodities, 2018, Available at: https://minerals.usgs.gov/minerals/pubs/mcs/2018/mcs2018.pdf (accessed July 26, 2018).

  58. China’s Great Wall Secures Lithium Supply Reuters, 2017. Available at: https://www.reuters.com/article/us-great-wall-motor-pilbara/chinas-great-wall-secures-lithium-supply-with-pilbara-deal-idUSKCN1C40JY (accessed July 26, 2018).

  59. Gaines L.: The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustainable Mater. Technol. 1–2, 2–7 (2014).

    Google Scholar 

  60. Rose D.M., Schenkman B., and Borneo D.: SANDIA REPORT SAND2013-8849 (US Department of Energy Sandia Laboratories, Albuquerque, New Mexico, 2013).

    Google Scholar 

  61. Fernão Pires V., Romero-Cadaval E., Vinnikov D., Roasto I., and Martins J.F.: Power converter interfaces for electrochemical energy storage systems—A review. Energy Convers. Manage. 86, 453–475 (2014).

    Google Scholar 

  62. Roberson D., Ellison J.F., Bhatnagar D., and Schoewald D.A.: SANDIA REPORT SAND2014-2883 (US Department of Energy Sandia Laboratories, Albuquerque, New Mexico, 2014).

    Google Scholar 

  63. Bodansky D., Brunnée J., and Rajamani L.: International Climate Change Law, 1st ed. (Oxford University Press, Oxford, U.K., 2017); p. 209. Made at the 21st Conference of the Parties to the UNFCCC meeting in Paris, 12 December 2015, the Paris Agreement entered into force on 4 November 2016, and has 195 Signatories: 195. A large proportion of this, 86.1%, i.e., 168 nations have now officially become Parties to the Paris Agreement.

    Google Scholar 

  64. The World Bank has compiled a freely accessible database of NDCs. Available at: http://spappssecext.worldbank.org/sites/indc/Pages/INDCHome.aspx (accessed July 26, 2018).

  65. Jacobson M.Z., Delucchi M.A., Bauer Z.A.F., Goodman S.C., Chapman W.E., Cameron M.A., Bozonnat C., Chobadi L., Clonts H.A., Enevoldsen P., Erwin J.R., Fobi S.N., Goldstrom O.K., Hennessy E.M., Liu J., Lo J., Meyer C.B., Morris S.B., Moy K.R., O’ Neill P.L., Petkov I., Redfern S., Schucker R., Sontag M.A., Wang J., Weiner E., and Yachanin A.S.: 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for 139 countries of the world. Joule 1, 108–121 (2017). Available at: http://www.cell.com/joule/pdf/S2542-4351(17)30012-0.pdf (accessed July 26, 2018).

    Google Scholar 

  66. Jacobson M.Z., Delucchi M.A., Bazouin G., Bauer Z.A.F., Heavey C.C., Fisher E., Morris S.B., Piekutowski D.J.Y., Vencill T.A., and Yeskoo T.W.: 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy Environ. Sci. 8(7), 2093 (2015).

    CAS  Google Scholar 

  67. Energy Independence and Security Act (EISA) of 200’ § 1301, 42 U.S.C. § 17,381 (Supp. I 2007)

  68. Unruh G.: Understanding carbon Lock-in. Energy Policy 28, 817–830 (2000). Unruh G.: Escaping carbon lock-in. Energy Policy 30, 317–325 (2002).

    Google Scholar 

  69. CAISO: Advancing and Maximizing the Value of Energy Storage Technology: A California Roadmap (2014). Available at: https://www.caiso.com/informed/Pages/CleanGrid/EnergyStorageRoadmap.aspx (accessed July 26, 2018).

    Google Scholar 

  70. Storage 2011 Act: Available at: https://www.congress.gov/bill/112th-congress/senate-bill/1845 (accessed July 26, 2018).

  71. Storage 2011 Act: https://www.congress.gov/bill/112th-congress/senate-bill/1845/text (accessed July 26, 2018).

  72. NREL: Federal Tax Incentives for Battery Storage Systems (2018). Available at: https://www.nrel.gov/docs/fy18osti/70384.pdf (accessed July 26, 2018).

    Google Scholar 

  73. Energy Storage Tax Incentive and Deployment Act. Available at: https://www.congress.gov/bill/115th-congress/senate-bill/1868?r=1 (accessed July 26, 2018).

  74. Feed In Tariff: Legal Sources on Renewable Energy. Available at: http://www.res-legal.eu/search-by-country/germany/single/s/res-e/t/promotion/aid/feed-in-tariff-eeg-feed-in-tariff/lastp/135/ (accessed July 26, 2018).

  75. Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz - EEG, 2017). Available at: https://www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html (accessed July 26, 2018). Renewable Energy Sources Act (EEG 2017). Available at: https://www.clearingstelle-eeg-kwkg.de/files/node/8/EEG_2017_Englische_Version.pdf (accessed July 26, 2018).

  76. Next generation renewables ACT government: Available at: https://www.environment.act.gov.au/energy/cleaner-energy/next-generation-renewables (accessed July 26, 2018).

  77. AB2514 was approved on september 29, 2010 and was entered into California public utilities code, chapter 7.7, sections 2835–2839; CPUC decision D14-10-045, October 16, 2014.

  78. Elkind E.N., Weissman S., and Hecht S.: The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions (Policy Paper, Center for Law, Energy & the Environment, UC Berkeley School of Law and Environmental Law Center & Emmett Center on Climate Change and the Environment, UCLA School of Law, July 2010); p. 3.

    Google Scholar 

  79. Parkinson G.: Why Generators Are Terrified of Solar, 26 March 2012. Available at: http://reneweconomy.com.au/2012/why-generators-are-terrified-of-solar-44279 (accessed July 26, 2018).

    Google Scholar 

  80. Rocky Mountain Institute, Homer Energy, and Cohnreznick Think Energy: The Economics of Grid Defection: When and where Distributed Solar Generation Plus Storage Competes with Traditional Utility Service.

  81. Meyer A.H.: Federal regulatory barriers to grid-deployed energy storage, 39 colum. J. Envtl. L. 479, 557 (2014); at 539.

    Google Scholar 

  82. Bender D., Byrne R., and Borneo D.: ARRA Energy Storage Demonstration Projects: Lessons Learned and Recommendation, Sandia National Laboratories, SAND2015-5242, 2015.

    Google Scholar 

  83. Energy Storage in Germany. Norton, Rose Fulbright: Available at: http://www.nortonrosefulbright.com/knowledge/publications/147129/energy-storage-in-germany-what-you-should-know (accessed July 26, 2018).

  84. Title XIII of the Energy Independence and Security Act of 2007 (EISA) which gave legislative support for DOE’s smart grid activities.

  85. Senjyu T., Takara H., Uezato K., and Funabashi T.: One-hour-ahead load forecasting using neural network. IEEE Trans. Power Syst. 17(1), 113–118 (2002).

    Google Scholar 

  86. Brophy H.A., Jamasb T., Platchkov L.M., and Pollitt M.G.: Demand-side management strategies and the residential sector: Lessons from the international experience. In The Future of Electricity Demand, Jamasb T. and Pollitt M., eds. (Cambridge University Press, Cambridge, 2011); pp. 337–378.

    Google Scholar 

  87. Sarvapali R.D., Vytelingum P., Rogers A., and Jennings N.R.: Putting the ‘smarts’ into the smart grid: A grand challenge for artificial intelligence. Commun. ACM 55(4), 86 (2012).

    Google Scholar 

  88. Valentin Robu why artificial intelligence could be key to future-proofing the grid. The Conversation, January 28, 2017.

  89. Liu D., Pang J., Zhou J., Peng Y., and Pecht M.: Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron. Reliab. 53(6), 832–839 (2013).

    CAS  Google Scholar 

  90. Gary Yang Z.: It’s Big and Long-Lived, and it Won’t Catch Fire: The Vanadium Redox-flow Battery (IEEE Spectrum Magazine, New York, 2017).

    Google Scholar 

  91. Demming A.: Supercapacitors empower sustainable energy storage. Nanotechnology 27, 250201 (2016).

    Google Scholar 

  92. Ahmed M., Wang B., Gupta B., Boeckl J.L., Motta N., and Iacopi F.: On-silicon supercapacitors with enhanced storage performance. J. Electrochem. Soc. 164(4), A638–A644 (2017).

    CAS  Google Scholar 

  93. Zuo W.H., Li R.Z., Zhou C., Li Y.Y., Xia J.L., and Liu J.P.: Battery-supercapacitor hybrid devices: Recent progress and future prospects. Adv. Sci. 4, 1600539 (2017).

    Google Scholar 

  94. Faunce TA Global Artificial Photosynthesis: Transition from corporatocene to sustainocene. Photochemistry 44, 261–284 (2017).

    Google Scholar 

  95. Faunce T.A., Styring S., Wasielewski M.R., Brudvig G.W., Rutherford A.W., Messinger J., Lee A.F., Hill C.L., deGroot H., Fontecave M., MacFarlane D.R., Hankamer B., Nocera D.G., Tiede D.M., Dau H., Hillier W., and Wang A.R.: Artificial photosynthesis as a Frontier technology for energy sustainability. Energy Environ. Sci. 6, 1074-1076} (2013).

    Google Scholar 

  96. Liu C., Colon B.C., Ziesack M., Silver P.A., and Nocera D.G.: Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352(6290), 1210–1213 (2016).

    CAS  Google Scholar 

  97. Moliner R., Lazaro M.J., and Suelves I.: Analysis of the strategies for bridging the gap towards the hydrogen economy. Int. J. Hydrogen Energy 44, 19500–19508 (2016).

    Google Scholar 

  98. Prest J.: The future of feed-in tariffs: Capacity caps, scheme closures and looming grid parity. Renew. Energy Law Policy Rev. 3(1), 25–41 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Iacopi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faunce, T.A., Prest, J., Su, D. et al. On-grid batteries for large-scale energy storage: Challenges and opportunities for policy and technology. MRS Energy & Sustainability 5, 10 (2018). https://doi.org/10.1557/mre.2018.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2018.11

Keywords

Navigation