Skip to main content

Advertisement

Log in

Solid-state lighting with wide band gap semiconductors

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Light-emitting diodes (LEDs) made from wide band gap semiconductors, such as gallium nitride, are undergoing rapid development. Solid-state lighting with these LEDs is transforming patterns of energy usage and lifestyle throughout the world.

With solid-state lighting gradually taking over from incandescent and fluorescent lighting, light-emitting diodes (LEDs) are very much the focus of research nowadays. This compact review takes a look at LEDs for lighting applications made from wide band gap semiconductors. A very brief history of electric lighting is included for completeness, followed by a description of blue-emitting LEDs that serve as pump sources for all ‘white’ LEDs. This is followed by a discussion on techniques to extract more light from the confines of LED chips through surface patterning. The thermal management of LEDs is perhaps the most important consideration in designing and using LED-based luminaires. This topic is discussed with regard to recent studies on LED reliability. The very promising development of gallium nitride-on-silicon LEDs is examined next followed by a discussion on phosphors for color conversion in LEDs. LED lighting has positively influenced both upscale and downscale illumination markets worldwide. Its societal impact is examined, with the review concluding with a look at efforts to produce LEDs from zinc oxide–a material that holds much promise for the future of solid-state lighting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Rahman F.: The bright present and brighter future of LED technology. Silicon Chip 26, 14–17 (2013).

    Google Scholar 

  2. Fred Schubert E., Kyu Kim J., Luo H., and Xi J-Q.: Solid-state lighting- a benevolent technology. Rep. Prog. Phys. 69, 3069–3099 (2006).

    Google Scholar 

  3. Johnstone B.: Brilliant!: Shuji Nakamura and the Revolution in Lighting Technology (Prometheus Books, New York, 2007).

    Google Scholar 

  4. Maeda N. and Hirayama H.: Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys. Status Solidi C 10, 1521–1524 (2013).

    CAS  Google Scholar 

  5. Kim K., Fan Z., Khizar M., Nakarmi M., Lin J.Y., and Jiang H.X.: AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers. Appl. Phys. Lett. 85, 4777–4779 (2004).

    CAS  Google Scholar 

  6. Shatalov M., Sun W., Jain R., Lunev A., Hu X., Dobrinsky A., Bilenko Y., Yang J., Garrett G., Rodak L., Wraback M., Shur M., and Gaska R.: High power AlGaN ultraviolet light emitters. Semicond. Sci. Technol. 29, 084007 (2014).

    CAS  Google Scholar 

  7. Zhang J., Hu X., Lunev A., Deng J., Bilenko Y., Katona T., Shur M., Gaska R., and Asif Khan M.: AlGaN deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 44, 7250–7253 (2005).

    CAS  Google Scholar 

  8. Zhao Y., Oh S., Wu F., Kawaguchi Y., Tanaka S., Fujito K., Speck J., DenBaars S.P., and Nakamura S.: Green semipolar (20bar 2bar 1) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth. Appl. Phys. Express 6, 062102 (2013).

    Google Scholar 

  9. Johnson K., Bousquet V., Hooper S., Kauer M., Zellweger C., and Heffernan J.: High-power InGaN light emitting diodes grown by molecular beam epitaxy. Electron. Lett. 40, 237–239 (2004).

    Google Scholar 

  10. Taguchi T.: Present status of white LED lighting technologies in Japan. J. Light Visual Environ. 27, 131–139 (2003).

    Google Scholar 

  11. Amano H., Sawaki N., Akasaki I., and Toyoda Y.: Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48, 353–355 (1986).

    CAS  Google Scholar 

  12. Amano H., Kito M., Hiramatsu K., and Akasaki I.: P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 28, L2112 (1989).

    CAS  Google Scholar 

  13. Nakamura S., Iwasa N., Senoh M., and Mukai T.: Hole compensation mechanism of P-type GaN films. Jpn. J. Appl. Phys. 31, 1258 (1992).

    CAS  Google Scholar 

  14. Nakamura S.: Novel metalorganic chemical vapor deposition system for GaN growth. Appl. Phys. Lett. 58, 2021–2023 (1991).

    CAS  Google Scholar 

  15. Rahman F., Xu S., Watson I., Kumar Baid Mutha D., Oxland R., Johnson N., Banerjee A., and Wasige E.: Ohmic contact formation to bulk and heterostructure gallium nitride family semiconductors. Appl. Phys. A 94, 633–639 (2009).

    CAS  Google Scholar 

  16. Weimar A., Lell A., Bruderl G., Bader S., and Harle V.: Investigation of low-resistance metal contacts on p-type GaN using the linear and circular transmission line method. Phys. Status Solidi A 183, 169 (2001).

    CAS  Google Scholar 

  17. Lewis L., Maaskant P.P., and Corbett B.: On the specific contact resistance of metal contacts to p-type GaN. Semicond. Sci. Technol. 21, 1738 (2006).

    CAS  Google Scholar 

  18. Sheu J-K., Lu Y., Lee M-L., Lai W., Kuo C.H., and Tun C-J.: Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer. Appl. Phys. Lett. 90, 263511 (2007).

    Google Scholar 

  19. Sun X.W. and Kwok H.S.: Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J. Appl. Phys. 86, 408 (1999).

    CAS  Google Scholar 

  20. Jeon S-R., Song Y-H., Jang H-J., Mo Yang G., Won Hwang S., and Son S.J.: Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions. Appl. Phys. Lett. 78, 3265–3267 (2001).

    CAS  Google Scholar 

  21. Wong W., Sands T., and Cheung N.W.: Damage-free separation of GaN thin films from sapphire substrates. Appl. Phys. Lett. 72, 599–601 (1998).

    Google Scholar 

  22. Wong W., Sands T., Cheung N., Kneissl M., Bour D., Mei P., Romano L.T., and Johnson N.M.: Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl. Phys. Lett. 75, 1360–1362 (1999).

    CAS  Google Scholar 

  23. Wong W., Cho Y., Weber E., Sands T., Yu K., Kruger J., Wengrow A.B., and Cheung N.W.: Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser lift-off. Appl. Phys. Lett. 75, 1887–1889 (1999).

    CAS  Google Scholar 

  24. Shchekin O., Epler J., Trottier T., Margalith T., Steigerwald D., Holcomb M., Martin P.S., and Krames M.R.: High performance thin-film flip-chip InGaN -GaN light-emitting diodes. Appl. Phys. Lett. 89, 071109 (2006).

    Google Scholar 

  25. Kim H., Kim K-K., Choi K-K., Kim H., Song J-O., Cho J., Hyeon Baik K., Sone C., Park Y., and Seong T-Y.: Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry. Appl. Phys. Lett. 91, 023510 (2007).

    Google Scholar 

  26. Hsu S., Pong B., Li W., Beechem T.E. III, Graham S., and Liu C.Y.: Stress relaxation in GaN by transfer bonding on Si substrates. Appl. Phys. Lett. 91, 251114 (2007).

    Google Scholar 

  27. David A., Fujii T., Sharma R., McGroddy K., Nakamura S., DenBaars S., Hu E., Weisbuch C., and Benisty H.: Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution. Appl. Phys. Lett. 88, 061124 (2006).

    Google Scholar 

  28. Cho H., Jang J., Choi J-H., Choi J., Kim J., Lee J., Lee B., Choe Y., Lee K-D., Kim S., Lee K., Kim S-K., and Lee Y-H.: Light extraction enhancement from nanoimprinted photonic crystal GaN-based blue light-emitting diodes. Opt. Express 14, 8654 (2006).

    CAS  Google Scholar 

  29. Schnitzer I., Yablonovitch E., Caneau C., Gmitter T.J., and Scherer A.: 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl. Phys. Lett. 63, 2174–2176 (1993).

    CAS  Google Scholar 

  30. Na S-I., Han D-S., Kim S-S., Lim J-H., Kim J-Y., and Park S-J.: Surface texturing of p-GaN layer for efficient GaN LED by maskless selective etching, phys. stat. Phys. Status Solidi C 2, 2916–2919 (2005).

    CAS  Google Scholar 

  31. Windisch R., Rooman C., Meinlschmidt S., Kiesel P., Zipperer D., Döhler G., Dutta B., Kuijk M., Borghs G., and Heremans P.: Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes. Appl. Phys. Lett. 79, 2315–2317 (2001).

    CAS  Google Scholar 

  32. David A., Benisty H., and Weisbuch C.: Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs. J. Disp. Technol. 3, 133 (2007).

    CAS  Google Scholar 

  33. Hong H-G., Kim S-S., Kim D-Y., Lee T., Song J-O., Cho J., Sone C., Park Y., and Seong T-Y.: Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process. Appl. Phys. Lett. 88, 103505 (2006).

    Google Scholar 

  34. Wierer J., Steigerwald D., Krames M., O’Shea J., Ludowise M., Christenson G., Shen Y-C., Lowery C., Martin P., Subramanya S., Gotz W., Gardner N., Kern R.S., and Stockman S.A.: High-power AlGaInN flip-chip light-emitting diodes. Appl. Phys. Lett. 78, 3379–3381 (2001).

    CAS  Google Scholar 

  35. Shakya J., Kim K., Lin J.Y., and Jiang H.X.: Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes. Appl. Phys. Lett. 85, 142–144 (2004).

    CAS  Google Scholar 

  36. Oder T., Shakya J., Lin J.Y., and Jiang H.X.: III-nitride photonic crystals. Appl. Phys. Lett. 83, 1231–1233 (2003).

    CAS  Google Scholar 

  37. Choi Y-S., Hennessy K., Sharma R., Haberer E., Gao Y., DenBaars S., Nakamura S., Hu E.L., and Meier C.: GaN blue photonic crystal membrane nanocavities. Appl. Phys. Lett. 87, 243101 (2005).

    Google Scholar 

  38. Matioli E. and Weisbuch C.: Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs. J. Phys. D: Appl. Phys. 43, 354005 (2010).

    Google Scholar 

  39. David A., Fujii T., Moran B., Nakamura S., DenBaars S., Weisbuch C., and Benisty H.: Photonic crystal laser lift-off GaN light-emitting diodes. Appl. Phys. Lett. 88, 133514 (2006).

    Google Scholar 

  40. Inoue K. and Ohtaka K.: Photonic Crystals: Physics, Fabrication and Applications (Springer, Berlin, 2004).

    Google Scholar 

  41. David A., Fujii T., Matioli E., Sharma R., Nakamura S., DenBaars S., Weisbuch C., and Benisty H.: Omnidirectional light extraction in GaN LEDs using an Archimedean tiling photonic crystal. Proc. SPIE 6115, 61151X (2006).

  42. Kang S., Ann S., and Kim S-M.: Nanostructures in Electronics and Photonics, Rahman Faiz ed.; Pan Stanford Publications, Singapore, May 2008, ISBN: 978-981-4241-10-6.

  43. Rahman F. and De La Rue R.M.: Photonic crystals enable ultra high brightness LEDs. Photonics Spectra 41, 52–56 (2007).

    Google Scholar 

  44. Wierer J., Krames M., Epler J., Gardner N., Craford M., Wendt J., Simmons J.A., and Sigalas M.M.: InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures. Appl. Phys. Lett. 84, 3885–3887 (2004).

    CAS  Google Scholar 

  45. Achermann M., Petruska M., Koleske D., Crawford M.H., and Klimov V.I.: Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett. 6, 1396 (2006).

    CAS  Google Scholar 

  46. Mueller A., Petruska M., Achermann M., Werder D., Akhadov E., Koleske D., Hoffbauer M.A., and Klimov V.I.: Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5, 1039 (2006).

    Google Scholar 

  47. Rahman F. and Johnson N.P.: Generation of white light from optically pumped gallium nitride epilayers. Appl. Phys. Lett. 89, 021105 (2006).

    Google Scholar 

  48. Rahman F.: Thermal doping of rare-earth ions in gallium nitride. J. Mod. Opt. 55, 1025–1031 (2008).

    CAS  Google Scholar 

  49. Rahman F.: Lanthanide ion incorporation in gallium nitride through a salt melt process. J. Optoelectron. Adv. Mater. 11, 326–330 (2009).

    CAS  Google Scholar 

  50. Lee D.S. and Steckl A.J.: Room-temperature-grown rare-earth-doped GaN luminescent thin films. Appl. Phys. Lett. 79, 1962–1964 (2001).

    CAS  Google Scholar 

  51. Steckl A.J. and Zavada J.M.: Optoelectronic properties and applications of rare-earth-doped GaN. MRS Bull. 24, 33–38 (1999).

    CAS  Google Scholar 

  52. Piprek J.: Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 207, 2217–2225 (2010).

    CAS  Google Scholar 

  53. Ryu H-Y., Shin D-S., and Shim J-I.: Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGa Nactive material. Appl. Phys. Lett. 100, 131109 (2012).

    Google Scholar 

  54. Wang J., Wang L., Wang L., Hao Z., Luo Y., Dempewolf A., Müller M., Bertram F., and Christen J.: An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes. J. Appl. Phys. 112, 023107 (2012).

    Google Scholar 

  55. Ni X., Fan Q., Shimada R., Özgür Ü., and Morkoç H.: Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells. Appl. Phys. Lett. 93, 171113 (2008).

    Google Scholar 

  56. Iveland J., Martinelli L., Peretti J., Speck J.S., and Weisbuch C.: Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013).

    Google Scholar 

  57. Denault K., Cantore M., Nakamura S., DenBaars S.P., and Seshadri R.: Efficient and stable laser-driven white lighting. AIP Adv. 3, 072107 (2013).

    Google Scholar 

  58. Horng R-H., Hong J-S., Tsai Y-L., Wuu D-S., Chen C-M., and Chen C-J.: Optimized thermal management from a chip to a heat sink for high-power GaN-based light-emitting diodes. IEEE Trans. Electron Devices 57, 2203–2207 (2010).

    CAS  Google Scholar 

  59. Su Y-F., Yang S-Y., Hung T-Y., Lee C-C., and Chiang K-N.: Light degradation test and design of thermal performance for high-power light-emitting diodes. Microelectron. Reliab. 52, 794–803 (2012).

    Google Scholar 

  60. Edmond J., Abare A., Bergman M., Bharathan J., Lee Bunker K., Emerson D., Haberern K., Ibbetson J., Leung M., Russel P., and Slater D.: High efficiency GaN-based LEDs and lasers on SiC. J. Cryst. Growth 272, 242–250 (2004).

    CAS  Google Scholar 

  61. Chang M-H., Das D., Varde P.V., and Pecht M.: Light emitting diodes reliability review. Microelectron. Reliab. 52, 762–782 (2012).

    Google Scholar 

  62. Liou B-H., Chen C-M., Horng R-H., Chiang Y-C., and Wuu D-S.: Improvement of thermal management of high-power GaN-based light-emitting diodes. Microelectron. Reliab. 52, 861–865 (2012).

    CAS  Google Scholar 

  63. Horng R-H., Lin R-C., Chiang Y-C., Chuang B-H., Hu H-L., and Hsu C-P.: Failure modes and effects analysis for high-power GaN-based light-emitting diodes package technology. Microelectron. Reliab. 52, 818–821 (2012).

    CAS  Google Scholar 

  64. Hwa Choi J. and Whan Shin M.: Thermal investigation of LED lighting module. Microelectron. Reliab. 52, 830–835 (2012).

    Google Scholar 

  65. Jeng M-J., Chiang K-L., Chang H-Y., Yen C-Y., Lin C-C., Chang Y-H., Lai M-J., Lee Y-L., and Chang L-B.: Heat sink performances of GaN/InGaN flip-chip light-emitting diodes fabricated on silicon and AIN submounts. Microelectron. Reliab. 52, 884–888 (2012).

    CAS  Google Scholar 

  66. Song B-M., Han B., Bar-Cohen A., Arik M., Sharma R., and Weaver S.: Life prediction of LED-based recess downlight cooled by synthetic jet. Microelectron. Reliab. 52, 937–948 (2012).

    Google Scholar 

  67. Mo C., Fang W., Pu Y., Liu H., and Jiang F.: Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD. J. Cryst. Growth 285, 312–317 (2005).

    CAS  Google Scholar 

  68. Feltin E., Beaumont B., Laügt M., de Mierry P., Vennéguès P., Lahrèche H., Leroux M., and Gibart P.: Stress control in GaN grown on silicon(111) by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 79, 3230–3232 (2001).

    CAS  Google Scholar 

  69. Strittmatter A., Krost A., Straßburg M., Türck V., Bimberg D., Bläsing J., and Christen J.: Low-pressure metal organic chemical vapor deposition of GaN on silicon(111) substrates using an AlAs nucleation layer. Appl. Phys. Lett. 74, 1242–1244 (1999).

    CAS  Google Scholar 

  70. Schulze F., Dadgar A., Bläsing J., Hempel T., Diez A., Christen J., and Krost A.: Growth of single-domain GaN layers on Si(001) by metalorganic vapor-phase epitaxy. J. Cryst. Growth 289, 485–488 (2006).

    CAS  Google Scholar 

  71. Zhu D., Wallis D.J., and Humphreys C.J.: Prospects of III-nitride optoelectronics grown on Si. Rep. Prog. Phys. 76, 106501 (2013).

    CAS  Google Scholar 

  72. Ma J., Zhu X., Ming Wong K., Zou X., and Lau K.M.: Improved GaN-based LED grown on silicon(111) substrates using stress/dislocation-engineered interlayers. J. Cryst. Growth 370, 265–268 (2013).

    CAS  Google Scholar 

  73. Kukushkin S., Osipov A., Bessolov V., Medvedev B., Nevolin V.K., and Tcarik K.A.: Substrates for epitaxy of gallium nitride: new materials and techniques. Rev. Adv. Mater. Sci. 17, 1–32 (2008).

    CAS  Google Scholar 

  74. Hageman P., Haffouz S., Grzegorczk A., Kirilyuk V., and Larsen P.K.: Growth of GaN epilayers on Si(111) substrates using multiple buffer layers. Mater. Res. Soc. Symp. Proc. 693, I3.20.1–I3.20.6 (2002).

  75. Rahman F.: Phosphors–the driving force behind LEDs. Compd. Semicond. 20, 56–59 (2014).

    Google Scholar 

  76. Chen L., Lin C-C., Yeh C-W., and Liu R-S.: Light converting inorganic phosphors for white light-emitting diodes. Materials 3, 2172–2195 (2010).

    CAS  Google Scholar 

  77. Yum J-H., Seo S-Y., Lee S., and Sung Y-E.: Y3Al5O12:Ce 0.05 phosphor coatings on gallium nitride for white light emitting diodes. J. Electrochem. Soc. 150, H47 (2003).

    Google Scholar 

  78. Chen L., Chu C-I., and Liu R-S.: Improvement of emission efficiency and color rendering of high-power LED by controlling size of phosphor particles and utilization of different phosphors. Microelectron. Reliab. 52, 900–904 (2012).

    CAS  Google Scholar 

  79. Hsu H-C., Wang C-J., Ru Lin H., and Han P.: Optimized semi-sphere lens design for high power LED package. Microelectron. Reliab. 52, 894–899 (2012).

    Google Scholar 

  80. Meneghini M., Dal Lago M., Trivellin N., Mura G., Vanzi M., Meneghesso G., and Zanoni E.: Chip and package-related degradation of high power white LEDs. Microelectron. Reliab. 52, 804–812 (2012).

    Google Scholar 

  81. Wang J-S., Tsai C-C., Liou J-S., Cheng W-C., Huang S-Y., Chang G-H., and Cheng W-H.: Mean-time-to-failure evaluations of encapsulation materials for LED package in accelerated thermal tests. Microelectron. Reliab. 52, 813–817 (2012).

    CAS  Google Scholar 

  82. Rahman F.: Broadband LEDs enhance colour fidelity. Compd. Semicond. 18, 49–52 (2012).

    Google Scholar 

  83. Rahman F.: High color definition lighting with broadband LEDs. Opt. Photonics News 24, 28–34 (2013).

    Google Scholar 

  84. Lu W., Jia Y., Zhao Q., Lv W., and You H.: Design of a luminescence pattern via altering the crystal structure and doping ions to create warm white LEDs. Chem. Commun. 50, 2635–2637 (2014).

    Google Scholar 

  85. Alonso E., Sherman A., Wallington T., Everson M., Field F., Roth R., and Kirchain R.E.: Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ. Sci. Technol. 46, 3406–3414 (2012).

    CAS  Google Scholar 

  86. Kato Y., Fujinaga K., Nakamura K., Takaya Y., Kitamura K., Ohta J., Toda R., Nakashima T., and Iwamori H.: Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci. 4, 535–539 (2011).

    CAS  Google Scholar 

  87. Sun Q., Andrew Wang Y., Song Li L., Wang D., Zhu T., Xu J., Yang C., and Li Y.: Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 1, 717–722 (2007).

    CAS  Google Scholar 

  88. Zhao J., Bardecke J., Munro A., Liu M., Niu Y., Ding I-K., Luo J., Chen B., Jen A.K-Y., and Ginger D.S.: Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 6, 463–467 (2006).

    CAS  Google Scholar 

  89. Lin M-T., Ying S-P., Lin M-Y., Tai K-Y., and Chen J-C.: High power LED package with vertical structure. Microelectron. Reliab. 52, 878–883 (2012).

    Google Scholar 

  90. Chen H., Chen K., Lin C., Wang C., Yeh C., Tsai H., Shih M.H., and Kuo H.C.: Improvement of lumen efficiency in white light-emitting diodes with air-gap embedded package. Microelectron. Reliab. 52, 933–936 (2012).

    CAS  Google Scholar 

  91. Fu H-K., Lin C-W., Chen T-T., Chen C-L., Cho P-T., and Sun C-J.: Investigation of dynamic color deviation mechanisms of high power light-emitting diode. Microelectron. Reliab. 52, 866–871 (2012).

    CAS  Google Scholar 

  92. Tsao J., Saunders H., Creighton J., Coltrin M.E., and Simmons J.A.: Solid-state lighting: an energy-economics perspective. J. Phys. D: Appl. Phys. 43, 354001–1-354001-17 (2010).

  93. Rahman F.: Solid-state lighting–a bright future. Electron. World 113, 30–35 (2006).

    Google Scholar 

  94. Jang E., Jun S., Jang H., Lim J., Kim B., and Kim Y.: White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 22, 3076–3080 (2010).

    CAS  Google Scholar 

  95. Bond M., Aye L., and Fuller R.J.: Solar lanterns or solar home lighting systems–community preferences in East Timor. Renewable Energy 35, 1076–1082 (2010).

    Google Scholar 

  96. Lee Hill R. and Curtin K.M.: Solar powered light emitting diode distribution in developing countries: an assessment of potential distribution sites in rural Cambodia using network analyses. Socio-Economic Planning Sciences 45, 48–57 (2011).

    Google Scholar 

  97. Mills E., Gengnagel T., and Wollburg P.: Solar-LED alternatives to fuel-based Lighting for night fishing. Energy Sustainable Dev. 21, 30–41 (2014).

    Google Scholar 

  98. Mukerjee A.K.: Comparison of CFL-based and LED-based solar lanterns. Energy Sustainable Dev. 11, 24–32 (2007).

    Google Scholar 

  99. Adkins E., Eapen S., Kaluwile F., Nair G., and Modi V.: Off-grid energy services for the poor: introducing LED lighting in the Millennium Villages Project in Malawi. Energy Policy 38, 1087–1097 (2010).

    Google Scholar 

  100. Sastrya O., Kamala Devi V., Pant P., Prasad G., Kumar R., and Bandyopadhyay B.: Development of white LED based PV lighting systems. Sol. Energy Mater. Sol. Cells 94, 1430–1433 (2010).

    Google Scholar 

  101. Wong S.: Overcoming obstacles against effective solar lighting interventions in South Asia. Energy Policy 40, 110–120 (2012).

    Google Scholar 

  102. Pode R.: Solution to enhance the acceptability of solar-powered LED lighting technology. Renewable Sustainable Energy Rev. 14, 1096–1103 (2010).

    CAS  Google Scholar 

  103. Chaurey A. and Kandpal T.C.: Solar lanterns for domestic lighting in India: viability of central charging station model. Energy Policy 37, 4910–4918 (2009).

    Google Scholar 

  104. Chaurey A. and Kandpal T.C.: Carbon abatement potential of solar home systems in India and their cost reduction due to carbon finance. Energy Policy 37, 115–125 (2009).

    Google Scholar 

  105. Jacobson A.: Connective power: solar electrification and social change in Kenya. World Dev. 35, 144–162 (2007).

    Google Scholar 

  106. Johann Nicholas N., Franks G.V., and Ducker W.A.: The mechanism for hydrothermal growth of zinc oxide. CrystEngComm 14, 1232–1240 (2012).

    Google Scholar 

  107. Demianets L., Kostomarov D., Kuz’mina I.P., and Pushko S.V.: Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr. Rep. 47, S86–S98 (2002).

    CAS  Google Scholar 

  108. Zheng H., Du X., Luo Q., Jia J., Gu C.Z., and Xue Q.K.: Wet chemical etching of ZnO film using aqueous acidic salt. Thin Solid Films 515, 3967–3970 (2007).

    CAS  Google Scholar 

  109. Yoo D-G., Nam S-H., Kim M., Jeong S., Jee H-G., Lee H., L ee N., Hong B., Kim Y., Jung D., and Boo J-H.: Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) devices. Surf. Coat. Technol. 202, 5476–5479 (2008).

    CAS  Google Scholar 

  110. Lee J-M., Kim K-K., Hyun C-K., Tampo H., and Niki S.: Microstructural evolution of ZnO by wet-etching using acidic solutions. J. Nanosci. Nanotechnol. 6, 3364–3368 (2006).

    CAS  Google Scholar 

  111. Kim H-K., Bae J., Kim K., Park S., Seong T-Y., and Adesida I.: Inductively-coupled-plasma reactive ion etching of ZnO using BCl 3 -based plasmas and effect of the plasma treatment on Ti/Au ohmic contacts to ZnO. Thin Solid Films 447–448, 90–94 (2004).

    Google Scholar 

  112. Ip K., Baik K., Overberg M., Lambers E., Heo Y., Norton D.P., and Pearton S.J.: Effect of high-density plasma etching on the optical properties and surface stoichiometry of ZnO. Appl. Phys. Lett. 81, 3546–3548 (2002).

    CAS  Google Scholar 

  113. Lee J-M., Chang K-M., Kim K-K., Choi W-K., and Park S-J.: Dry etching of ZnO using an inductively coupled plasma. J. Electrochem. Soc. 148, G1–G3 (2001).

    Google Scholar 

  114. Lim W., Voss L., Khanna R., Gila B., Norton D., Pearton S.J., and Ren F.: Dry etching of bulk single-crystal ZnO in CH 4 /H 2 -based plasma chemistries. Appl. Surf. Sci. 253, 889–894 (2006).

    CAS  Google Scholar 

  115. Wang Z.L.: Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl. Phys. A 88, 7–15 (2007).

    CAS  Google Scholar 

  116. Dai L., Deng H., Mao F.Y., and Zang J.D.: The recent advances of research on p -type ZnO thin film. J. Mater. Sci.: Mater. Electron. 19, 727–734 (2008).

    CAS  Google Scholar 

  117. von Wenckstern H., Benndorf G., Heitsch S., Sann J., Brandt M., Schmidt H., Lenzner J., Lorenz M., Kuznetsov A., Meyer B.K., and Grundmann M.: Properties of phosphorus doped ZnO. Appl. Phys. A 88, 125–128 (2007).

    Google Scholar 

  118. Kaminska E., Piotrowska A., Kossut J., Butkutė R., Dobrowolski W., Łukasiewicz R., Barcz A., Jakieła R., Dynowska E., Prze ź dziecka E., Aleszkiewicz M., Wojnar P., and Kowalczyk E.: p-type conducting ZnO: fabrication and characterization. Phys. Status Solidi C 2, 1119–1124 (2005).

    CAS  Google Scholar 

  119. Zhao Z., Liang H., Sun J., Bian J., Feng Q., Hu L., Z hang H., Liang X., Luo Y.M., and Du G.T.: Electroluminescence from n-ZnO/p-ZnO: Sb homojunction light emitting diode on sapphire substrate with metal -organic precursors doped p-type ZnO layer grown by MOCVD technology. J. Phys. D: Appl. Phys. 41, 195110 (2008).

    Google Scholar 

  120. Shukla G.: ZnO/MgZnO p -n junction light-emitting diodes fabricated on sapphire substrates by pulsed laser deposition technique. J. Phys. D: Appl. Phys. 42, 075105 (2009).

    Google Scholar 

  121. Dong X., Zhu H., Zhang B., Li X.P., and Du G.T.: ZnO-based homojunction light-emitting diodes fabricated by metal-organic chemical vapor deposition. Semicond. Sci. Technol. 22, 1111–1114 (2007).

    CAS  Google Scholar 

  122. Murai A., Thompson D., Masui H., Fellows N., Mishra U., Nakamura S., and DenBaars S.P.: Mega-cone blue LEDs based on ZnO/GaN direct wafer bonding. Phys. Status Solidi C 4, 2756–2759 (2007).

    CAS  Google Scholar 

  123. Bayram C., Hosseini Teherani F., Rogers D.J., and Razeghi M.: A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN. Appl. Phys. Lett. 93, 081111 (2008).

    Google Scholar 

  124. Bulashevich K., Evstratov I.Yu., and Karpov S.Yu.: Hybrid ZnO/III-nitride light-emitting diodes: modelling analysis of operation. Phys. Status Solidi A 204, 241–245 (2007).

    CAS  Google Scholar 

  125. Alivov Ya.I., Kalinina E., Cherenkov A., Look D., Ataev B., Omaev A., Chukichev M.V., and Bagnall D.M.: Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 83, 4719–4721 (2003).

    CAS  Google Scholar 

  126. Yuen C., Yu S., Lau S., Rusli, and Chen T.P.: Fabrication of n-ZnO:Al —p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique. Appl. Phys. Lett. 86, 241111 (2005).

    Google Scholar 

  127. Kim J., Byun D., Ie S., Park D., Choi W., Choi J-W., and Angadi B.: Cu-doped ZnO-based p-n hetero-junction light emitting diode. Semicond. Sci. Technol. 23, 095004 (2008).

    Google Scholar 

  128. Ahn J., Park H., Mastro M., Hite J., Eddy C., Jr., and Kim J.: Nanostructured n-ZnO / thin film p-silicon heterojunction light-emitting diodes. Opt. Express 19, 26006–26010 (2011).

    CAS  Google Scholar 

  129. Chang C-Y., Tsao F-C., Pan C-J., Chi G-C., Wang H-T., Chen J-J., Ren F., Norton D., Pearton S., Chen K-H., and Chen L-C.: Electroluminescence from ZnO nanowire/polymer composite p-n junction. Appl. Phys. Lett. 88, 173503 (2006).

    Google Scholar 

  130. Sun X., Huang J., Wang J.X., and Xu Z.: A ZnO nanorod inorganic/ organic heterostructure light-emitting diode emitting at 342 nm. Nano Lett. 8, 1219–1223 (2008).

    CAS  Google Scholar 

  131. Ryu Y., Lee T-S., Lubguban J., White H., Kim B-J., Park Y-S., and Youn C-J.: Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett. 88, 241108 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiz Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, F., Center, S. Solid-state lighting with wide band gap semiconductors. MRS Energy & Sustainability 1, 6 (2014). https://doi.org/10.1557/mre.2014.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2014.11

Keywords

Navigation