Skip to main content
Log in

The structure and mechanical properties of Cu50Ni50 alloy nanofoams formed via polymeric templating

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The authors demonstrate that multicomponent metallic alloy nanofoams can be synthesized by the polymeric templating method. The present approach enabled alloy compositions not accessible via commonly used dealloying or co-deposition methods. The authors report the synthesis of a Cu50Ni50 alloy nanofoam using electrospinning polymeric templating, which exhibits distinct polycrystallinity, process-driven segregation, and enhanced mechanical strength over pure Cu nanofoams. Transmission electron microscopy revealed microscopic grain formation and their variable compositions. The processing method is applicable to the synthesis of a wide range of multicomponent metal porous materials, creating new research opportunities for noble alloy foams not available through wet electrochemical routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. W. Luc and F. Jiao: Nanoporous metals as electrocatalysts: state-of-the-art, opportunities, and challenges. ACS Catal. 7, 5856 (2017).

    Article  CAS  Google Scholar 

  2. J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, and F.F. Abraham: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379 (2006).

    Article  CAS  Google Scholar 

  3. A. Neogi, L. He, and N. Abdolrahim: Atomistic simulations of shock compression of single crystal and core-shell Cu@ Ni nanoporous metals. Jpn J. Appl. Phys. 126, 015901 (2019).

    Article  Google Scholar 

  4. J. Biener, G.W. Nyce, A.M. Hodge, M.M. Biener, A.V. Hamza, and S.A. Maier: Nanoporous plasmonic metamaterials. Adv. Mater. 20, 1211 (2008).

    Article  CAS  Google Scholar 

  5. I. McCue, E. Benn, B. Gaskey, and J. Erlebacher: Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263 (2016).

    Article  CAS  Google Scholar 

  6. M. Stratmann and M. Rohwerder: Materials science: a pore view of corrosion. Nature 410, 420 (2001).

    Article  CAS  Google Scholar 

  7. J. Erlebacher: An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 151, C614 (2004).

    Article  CAS  Google Scholar 

  8. M. Hakamada and M. Mabuchi: Fabrication, microstructure, and properties of nanoporous Pd, Ni, and their alloys by dealloying. Crit. Rev. Solid State Mater. Sci. 38, 262 (2013).

    Article  CAS  Google Scholar 

  9. G.G. Li and H. Wang: Dealloyed nanoporous gold catalysts: from macroscopic foams to nanoparticulate architectures. ChemNanoMat 4, 897 (2018).

    Article  CAS  Google Scholar 

  10. A. Hodge, R. Doucette, M. Biener, J. Biener, O. Cervantes, and A. Hamza: Ag effects on the elastic modulus values of nanoporous Au foams. J. Mater. Res. 24, 1600 (2009).

    Article  CAS  Google Scholar 

  11. C.-E. Kim, R.M. Rahimi, N. Hightower, I. Mastorakos, and D.F. Bahr: Synthesis, microstructure, and mechanical properties of polycrystalline Cu nano-foam. MRS Adv. 3, 469 (2018).

    Article  CAS  Google Scholar 

  12. J. Zhang, M.D. Baró, E. Pellicer, and J. Sort: Electrodeposition of magnetic, superhydrophobic, non-stick, two-phase Cu–Ni foam films and their enhanced performance for hydrogen evolution reaction in alkaline water media. Nanoscale 6, 12490 (2014).

    Article  CAS  Google Scholar 

  13. A. Greiner and J.H. Wendorff: Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 5670 (2007).

    Article  CAS  Google Scholar 

  14. J. Liu, M.J. Chang, and H.L. Du: Facile preparation of cross-linked porous poly(vinyl alcohol) nanofibers by electrospinning. Mater. Lett. 183, 318 (2016).

    Article  CAS  Google Scholar 

  15. B.M. Eick and J.P. Youngblood: SiC nanofibers by pyrolysis of electrospun preceramic polymers. J. Mater. Sci. 44, 160 (2009).

    Article  CAS  Google Scholar 

  16. P.J. Spencer and W. Slough: Applied and experimental chemical thermodynamics at high temperatures. High Temp. High Press. 2, 123 (1970).

    CAS  Google Scholar 

  17. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  18. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  19. D.F. Bahr and D.J. Morris: Nanoindentation: localized probes of mechanical behavior of materials. In Springer Handbook of Experimental Solid Mechanics, ed. W.N. Sharpe (Springer, New York NY, 2008), pp. 389–404.

    Chapter  Google Scholar 

  20. S. Divinski, J. Ribbe, G. Schmitz, and C. Herzig: Grain boundary diffusion and segregation of Ni in Cu. Acta Mater. 55, 3337 (2007).

    Article  CAS  Google Scholar 

  21. E.A. Zen: Validity of “Vegard’s Law” 41(5–6), 523–524 (1956).

    CAS  Google Scholar 

  22. A.R. Denton and N.W. Ashcroft: Vegard’s law. Phys. Rev. A 43, 3161 (1991).

    Article  CAS  Google Scholar 

  23. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).

    Article  CAS  Google Scholar 

  24. W. Weisweiler: Kinetic studies of the catalytic graphitizing of glass-like carbon with the aid of nickel. High Temp. High Press. 2, 187 (1970).

    CAS  Google Scholar 

  25. M. Ashby: The properties of foams and lattices. Philos. Trans. R. Soc. A 364, 15 (2006).

    Article  CAS  Google Scholar 

  26. X. Xiao, H. Yu, H. Jin, M. Wu, Y. Fang, J. Sun, Z. Hu, T. Li, J. Wu, and L. Huang: Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 11, 2180 (2017).

    Article  CAS  Google Scholar 

  27. X. Xiao, H. Song, S. Lin, Y. Zhou, X. Zhan, Z. Hu, Q. Zhang, J. Sun, B. Yang, and T. Li: Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 1 (2016).

    Google Scholar 

  28. F.J. Burpo, E.A. Nagelli, A.R. Losch, J.K. Bui, G.T. Forcherio, D.R. Baker, J.P. McClure, S.F. Bartolucci, and D.D. Chu: Salt-templated platinum-copper porous macrobeams for ethanol oxidation. Catalysts 9, 662 (2019).

    Article  CAS  Google Scholar 

  29. F.J. Burpo, E.A. Nagelli, A.N. Mitropoulos, S.F. Bartolucci, J.P. McClure, D.R. Baker, A.R. Losch, and D.D. Chu: Salt-templated platinum–palladium porous macrobeam synthesis. MRS Commun. 9, 280 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Science Foundation under Grant No. CMMI 1634772.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Bahr.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2020.16

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, CE., Rahimi, R.M. & Bahr, D.F. The structure and mechanical properties of Cu50Ni50 alloy nanofoams formed via polymeric templating. MRS Communications 10, 286–291 (2020). https://doi.org/10.1557/mrc.2020.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.16

Navigation