Skip to main content
Log in

Investigation of mechanical properties of tibia and femur articulations of insect joints with different joint functions

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Insects have more than a million described species and represent more than half of all known living organisms. However, little is known about the operation and functions of the insect body, particularly their remarkable leg joints. This study is focused on partly filling this knowledge gap by using nanoindentation instruments to characterize the mechanical properties of leg joints from three different insects: a beetle, a mantis, and a dragonfly nymph. For all insect species, the tibia joint had the largest effective elastic moduli, followed by the femur joint, while the exocuticle had the smallest values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table I

Similar content being viewed by others

References

  1. S. Kim, C. Laschi, and B. Trimmer: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).

    Article  CAS  Google Scholar 

  2. J.B. Puthoff, M. Holbrook, M.J. Wilkinson, K. Jin, N.S. Pesika, and K. Autumn: Dynamic friction in natural and synthetic gecko setal arrays. Soft Matter 9, 4855–4863 (2013).

    Article  CAS  Google Scholar 

  3. U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, and R.O. Ritchie: Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article  CAS  Google Scholar 

  4. B. Bhushan: Bioinspired structured surfaces. Langmuir 28, 1698–1714 (2012).

    Article  CAS  Google Scholar 

  5. J.K. Oh, S.T. Behmer, R. Marquess, C. Yegin, E.A. Scholar, and M. Akbulut: Structural, tribological, and mechanical properties of the hind leg joint of a jumping insect: using katydids to inform bioinspired lubrication systems. Acta Biomater. 62, 284–292 (2017).

    Article  Google Scholar 

  6. B. Ji and H. Gao: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963–1990 (2004).

    Article  Google Scholar 

  7. J. Meng, P. Zhang, and S. Wang: Recent progress of abrasion-resistant materials: learning from nature. Chem. Soc. Rev. 45, 237–251 (2016).

    Article  CAS  Google Scholar 

  8. R. Rakitov and S.N. Gorb: Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state. Proc. R. Soc. B Biol. Sci. 280, 20122391 (2012).

    Article  Google Scholar 

  9. J. Bustamante, J.F. Panzarino, T.J. Rupert, and C. Loudon: Forces to pierce cuticle of tarsi and material properties determined by nanoindentation: the Achilles’ heel of bed bugs. Biol. Open 6, 1541–1551 (2017).

    CAS  Google Scholar 

  10. Y. Zhang, H. Huang, J.X. Zhang, S.B. Zhang, and L.Q. Ren: Forces to pierce cuticle of tarsi and material properties determined by nanoindentation: the Achilles’ heel of bed bugs. Biol. Open 6, 1541–1551 (2017).

    Article  Google Scholar 

  11. Y.H. Chen, M. Skote, Y. Zhao, and W.M. Huang: Stiffness evaluation of the leading edge of the dragonfly wing via laser vibrometer. Mater. Lett. 97, 166–168 (2013).

    Article  CAS  Google Scholar 

  12. J.K. Oh, C. Yegin, and M. Akbulut: Micro/nanoscale tribological and mechanical investigation of the articular surfaces of katydid leg joints: potential for the novel bioinspired lubrication systems. MRS Adv. 2, 1117–1123 (2017).

    Article  CAS  Google Scholar 

  13. B.A. Kheireddin, T.C. Williams, and M. Akbulut: Tribological properties of femur-tibia articulation of lubber grasshopper. Tribol. Int. 50, 76–81 (2012).

    Article  Google Scholar 

  14. M. Burrows: Froghopper insects leap to new heights. Nature 424, 509–509 (2003).

    Article  CAS  Google Scholar 

  15. M.A. Meyers, P.-Y. Chen, A.Y-M. Lin, and Y. Seki: Friction and wear properties of the tergum surface of mole cricket Gryllotalpa orientalis. Appl. Mech. Mater. 461, 707–711 (2013).

    Article  Google Scholar 

  16. N. Barbakadze: Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 209, 722–730 (2006).

    Article  CAS  Google Scholar 

  17. J. Sun, W. Wu, M. Ling, B. Bhushan, and J. Tong: A dynamic nanoindentation technique to investigate the nanomechanical properties of a colored beetle. RSC Adv. 6, 79106–79113 (2016).

    Article  CAS  Google Scholar 

  18. S.S. Singh, M.A. Jansen, N.M. Franz, and N. Chawla: Microstructure and nanoindentation of the rostrum of Curculio longinasus Chittenden, 1927 (Coleoptera: Curculionidae). Mater. Charact. 118, 206–211 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon the work supported by the National Science Foundation under Grant No. 1434421 to J.K. Oh and M. Akbulut.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Kyun Oh or Mustafa Akbulut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J.K., Behmer, S.T., Marquess, R. et al. Investigation of mechanical properties of tibia and femur articulations of insect joints with different joint functions. MRS Communications 9, 900–903 (2019). https://doi.org/10.1557/mrc.2019.71

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.71

Navigation