Skip to main content
Log in

Zn-enriched PtZn nanoparticle electrocatalysts synthesized by solution combustion for ethanol oxidation reaction in an alkaline medium

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This work focuses on the syntheses of Zn-enriched PtZn nanoparticle electrocatalysts by solution combustion for ethanol oxidation reaction (EOR). Analytical techniques of x-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy, TEM/scanning TEM-energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy are used for the characterization of electrocatalysts. Cyclic voltammetry and chronoamperometry are applied for the electrocatalysis of C2H50H and stability test in an alkaline medium, respectively. Electrochemical data show that PtZn/C has improved electrocatalytic activity by ~2.3 times compared with commercial Pt/C, in addition to having earlier onset potential and better stability for EOR. The variation of fuel amount in the synthesis has affected crystallite sizes, electronic, and electrochemical properties in electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. N.S. Porter, H. Wu, Z. Quan, and J. Fang: Shape-control and electrochemical activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 8, 1867–1877 (2003).

    Google Scholar 

  2. M. Ogden: Sustainable energy supply. In Handbook of Fuel Cells: Fundamentals Technology and Applications, edited by W. Vielstich, A. Lamn, and H. Gasteiger, pp. 1–8 (John Willey & Sons Ltd., 3, Chichester, 2003).

    Google Scholar 

  3. R. Rizo, D. Sebastian, M.J. Lazaro, and E. Pastor: On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B Environ. 200, 246–254 (2017).

    Article  CAS  Google Scholar 

  4. C. Zhong, J. Luo, B. Fang, B.N. Wanjala, P.N. Njoki, R. Loukrakpam, and J. Yin: Nanostructured catalysts in fuel cells. Nanotechnology 21, 062001–062020 (2010).

    Article  CAS  Google Scholar 

  5. G. Yang, Y. Zhou, H. Pan, C. Zhou, S. Fu, C.M. Wai, D. Du, J. Zhu, and Y. Lin: Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nano-composites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrason. Sonochem. 28, 192–198 (2016).

    Article  CAS  Google Scholar 

  6. S.Y. Shen, T.S. Zhao, J.B. Xu, and Y.S. Li: Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 195, 1001–1006 (2010).

    Article  CAS  Google Scholar 

  7. C. Zai, J. Hu, M. Sun, and M. Zhu: Two dimensional visible-light-active Pt-Biol photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media. Appl. Surf. Sci. 430, 578–584 (2017).

    Article  CAS  Google Scholar 

  8. K. Zhang, H. Xu, B. Yan, J. Wang, Z. Gu, and Y. Du: Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation. Appl. Surf. Sci. 425, 77–82 (2017).

    Article  CAS  Google Scholar 

  9. M.A. Matin, E. Lee, H. Kim, W.-Y. Yoon, and Y.-U. Kwon: Rational syntheses of core-shell Fe@(PtRu) nanoparticle electrocatalysts for the methanol oxidation reaction with complete suppression of CO-poisoning and highly enhanced activity. J. Mater. Chem. A 3, 17154–17164 (2015).

    Article  CAS  Google Scholar 

  10. P. Mukherjee, J. Bagchi, S. Dutta, and S.K. Battacharya: The nickel supported platinum catalyst for anodic oxidation of ethanol in alkaline medium. Appl. Catal. A Gen. 506, 220–227 (2015).

    Article  CAS  Google Scholar 

  11. E.E. Switzer, T.S. Olson, A.K. Datye, P. Atanassov, M.R. Hibbs, and C. J. Cornelius: Templated Pt-Sn electrocatalysts for ethanol, methanol and CO oxidation in alkaline media. Electrochim. Acta 54, 989–995 (2009).

    Article  CAS  Google Scholar 

  12. X. Wang, L. Altmann, J. Stover, V. Zielasek, M. Baumer, A.-S. Katharina, H. Borchert, J. Parisi, and K.-O. Joanna: Pt/Zn intermetallic, core/shell and alloy nanoparticles: colloidal synthesis and structural control. Chem. Mater. 25, 1400–1407 (2013).

    Article  CAS  Google Scholar 

  13. J. Maya-Cornejo, R. Carrerra-Cerritos, D. Sebastian, L Ledesma-Garcia, L.G. Arriaga, A.S. Arico, and V. Baglio: PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell. Int. J. Hydrog. Energy 42, 27919–27928 (2017).

    Article  CAS  Google Scholar 

  14. C. Jin, X. Ma, J. Zhang, O. Huo, and R. Dong: Surface modification of Pt/C catalyst with Ag for electrooxidation of ethanol. Electrochim. Acta 146, 533–537 (2014).

    Article  CAS  Google Scholar 

  15. J.M. Gregoire, M. Kostylev, M.E. Tague, P.F. Mutolo, R.B. Van Dover, F. J. DiSalvo, and H.D. Abruna: High-throughput evaluation of dealloyed Pt-Zn composition-spread thin film for methanol-oxidation catalysis. J. Electrochem. Soc. 156, B160–B166 (2009).

    Article  CAS  Google Scholar 

  16. J. Zhu, X. Zheng, J. Wang, Z. Wu, L. Han, R. Lin, H.L. Xin, and D. Wang: Structurally ordered Pt-Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation. J. Mater. Chem. A 3, 22129–22135 (2015).

    Article  CAS  Google Scholar 

  17. A. Miura, H. Wang, B.M. Leonard, H.D. Abruna, and F.J. DiSalvo: Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts. Chem. Mater. 21, 2661–2667 (2009).

    Article  CAS  Google Scholar 

  18. Z. Qi, C. Xiao, C. Liu, T. W. Goh, L. Zhou, R. Maligal-Ganesh, Y. Pei, X. Li, L. A. Curtiss, and W. Huang: Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 139, 4762–4768 (2017).

    Article  CAS  Google Scholar 

  19. Y. Kang, J.B. Pyo, X. Ye, T.R. Gordon, and C.B. Murray: Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 6, 5642–5647 (2012).

    Article  CAS  Google Scholar 

  20. H. Sasaki and M. Maeda: Enhanced dissolution of Pt from Pt-Zn intermetallic compounds and underpotential dissolution from Zn-rich alloys. J. Phys. Chem. C 117, 18457–18463 (2013).

    Article  CAS  Google Scholar 

  21. Q. Chen, J. Zhang, Y. Jia, Z. Jiang, Z. Xie, and L. Zheng: Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale 6, 7019–7024 (2014).

    Article  CAS  Google Scholar 

  22. Z. Moser: The Pt-Zn (platinum-zinc) system. J. Phase Equilib. 12, 439–443 (1991).

    Article  CAS  Google Scholar 

  23. E.H. Kottcamp and E.L. Langer: Binary alloy phase diagrams. In ASM Handbook: Alloy Phase Diagrams, edited by H. Okamoto, M.E. Schlesinger, and E.M. Mueller, pp. 79–624 (3, 1992).

    Google Scholar 

  24. H. Nowotny, E. Bauer, A. Stempfl, and H. Bittner: Platinum-zinc alloy phase diagram [based on 1952 H. Nowotny]. Monatsh. Chem. 83, 221–236 (1952).

    Article  CAS  Google Scholar 

  25. M. Hansen, K. Anderko, and H.W. Saizberg: Constitution of binary alloys. J. Electrochem. Soc. 105, 260C–261C (1958).

    Article  Google Scholar 

  26. Z.-X. Chen, K.M. Neyman, A.B. Gordienko, and N. Rosch: Surface structure and stability of PdZn and PtZn alloys: density-functional slab model studies. Phys. Rev. B 68, 075417–8 (2003).

    Article  CAS  Google Scholar 

  27. C.-T. Hsieh, W.-M. Hung, W.-Y. Chen, and J.-Y. Lin: Microwave-assisted polyol synthesis of Pt-Zn electrocatalysts on carbon nanotube electrodes for methanol oxidation. Int. J. Hydrog. Energy 36, 2765–2772 (2011).

    Article  CAS  Google Scholar 

  28. S.-I. Ito, Y. Suwa, S. Kondo, S. Kameoka, K. Tomishige, and K. Kunimori: Steam reforming of methanol over Pt-Zn alloy catalyst supported on carbon black. Catal. Commun. 4, 499–503 (2003).

    Article  CAS  Google Scholar 

  29. W.J. Pech-Rodriguez, D. Gonzalez-Quijano, G. Vargas-Gutierrez, C. Morais, T.W. Napporn, and F.J. Rodriguez-Varela: Electrochemical and in situ FTIR study of the ethanol oxidation reaction on PtMo/C nanomaterials in alkaline media. Appl. Catal. B Environ. 203, 654–662 (2017).

    Article  CAS  Google Scholar 

  30. M.A. Matin, A. Kumar, R.R. Bhosale, M.A.H.S. Saad, F.A. Almomani, and M.J. Al-Marri: PdZn nanoparticle electrocatalysts synthesized by solution combustion for methanol oxidation reaction in an alkaline medium. RSC Adv. 7, 42709–42717 (2017).

    Article  CAS  Google Scholar 

  31. M.A. Matin, J.-H. Jang, and Y.-U. Kwon: PdM nanoparticles (M = Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. J. Power Sources 262, 356–263 (2014).

    Article  CAS  Google Scholar 

  32. Y. Qiao and C.M. Li: Nanostructured catalysts in fuel cells. J. Mater. Chem. 21, 4027–4036 (2011).

    Article  CAS  Google Scholar 

  33. A.G. Merzhanov: History and recent developments in SHS. Ceram. Int. 21, 371–379 (1995).

    Article  CAS  Google Scholar 

  34. J. Kingsley and K.C. Patil: A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 6, 427–432 (1988).

    Article  CAS  Google Scholar 

  35. A. Cross, A. Kumar, E.E. Wolf, and A.S. Mukasyan: Combustion synthesis of a nickel supported catalyst: effect of metal distribution on the activity during ethanol decomposition. Ind. Eng. Chem. Res. 51, 12004–12008 (2012).

    Article  CAS  Google Scholar 

  36. A. Kumar, A.S. Mukasyan, and E.E. Wolf: Combustion synthesis of Ni, Fe and Cu multi-component catalysts for hydrogen production from ethanol reforming. Appl. Catal. A Gen. 401, 20–28 (2011).

    Article  CAS  Google Scholar 

  37. S.T. Aruna and A.S. Mukasyan: Combustion synthesis and nanomaterials. Curr Opin. Sold State Mater. Sci. 12, 44–50 (2008).

    Article  CAS  Google Scholar 

  38. R.K. Lenka, T. Mahata, P.K. Sinha, and A.K. Tyagi: Combustion synthesis of gadolina-doped ceria using glycine and urea fuels. J. Alloys Compd. 466, 326–329 (2008).

    Article  CAS  Google Scholar 

  39. S.L. Gonzalez-Cortes and F.E. Imbert: Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. A Gen. 452, 117–131 (2013).

    Article  CAS  Google Scholar 

  40. F.-T. Li, J. Ran, M. Jaroniec, and S.Z. Qiao: Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscalel, 17590–17610 (2015).

    Google Scholar 

  41. A. Varma, A.S. Mukasyan, A.S. Rogachev, and K.V. Manukyan: Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016).

    Article  CAS  Google Scholar 

  42. A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011).

    Article  CAS  Google Scholar 

  43. Y.-T. Kim, M.A. Matin, and Y.-U. Kwon: Graphene as electronic structure modifier of nanostructured Pt film for enhanced methanol oxidation reaction electrocatalysis. Carbon N. Y. 66, 691–698 (2014).

    Article  CAS  Google Scholar 

  44. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, and R.St.C. Smart: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010).

    Article  CAS  Google Scholar 

  45. B. Hammer and J.K. Norskov: Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  46. L.A. Kibler, A.M. El-Aziz, R. Hoyer, and D.M. Kolb: Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44, 2080–2084 (2005).

    Article  CAS  Google Scholar 

  47. Z. Zhang, J. Ge, L. Ma, J. Liao, T. Lu, and W. Xing: Highly active carbon-supported PdSn catalysts for formic acid electrooxidation. Fuel Cells 9, 114–120 (2009).

    Article  CAS  Google Scholar 

  48. L. Zhang, L. Wan, Y. Ma, Y. Chen, Y. Zhou, Y. Tang, and T. Lu: Crystalline palladium-cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl. Catal. B. Environ. 138–139, 229–235 (2013).

    Article  CAS  Google Scholar 

  49. J.X. Wang, N.M. Markovic, and R.R. Adzic: Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. 6108, 4127–4133 (2004).

    Article  CAS  Google Scholar 

  50. J.X. Wang, J.L. Zhang, and R.R. Adzic: Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. J. Phys. Chem. A 111, 12702–12710 (2007).

    Article  CAS  Google Scholar 

  51. H. Igarashi, T. Fujino, Y. Zhu, H. Uchida, and M. Watanabe: CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys. Chem. Chem. Phys. 3, 306–314 (2001).

    Article  CAS  Google Scholar 

  52. Y. Feng, D. Bin, B. Yan, Y. Du, T. Majima, and W. Zhou: Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation. J. Colloid Interface Sci. 493, 190–197 (2017).

    Article  CAS  Google Scholar 

  53. X. Chen, Z. Cai, X. Chen, and M. Oyama: Green synthesis of graphene-PtPd alloy nanoparticles with high electrocatalytic performance for ethanol oxidation. J. Mater. Chem. A 2, 315–320 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This publication was made possible by NPRP grant (NPRP8-509-2-209) from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author(s). The authors also gratefully acknowledge the Gas Processing Centre (GPC) and the Central Laboratory Unit (CLU) at the Qatar University and the Qatar Environment and Energy Research Institute (QEERI) at the Qatar Foundation for services related to XPS, TEM, and STEM–HAADF–EDS analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.62

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matin, M.A., Kumar, A., Saad, M.A.H.S. et al. Zn-enriched PtZn nanoparticle electrocatalysts synthesized by solution combustion for ethanol oxidation reaction in an alkaline medium. MRS Communications 8, 411–419 (2018). https://doi.org/10.1557/mrc.2018.62

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.62

Navigation