Skip to main content
Log in

Crystallization mechanism and kinetics of Cr2Ge2Te6 phase change material

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The crystallization mechanism and kinetics of Cr2Ge2Te6 (CrGT) films were investigated by differential scanning calorimetry. The average Avrami exponent (na) analysis indicated that CrGT exhibits a growth-dominant crystallization in the range of heating rate (β) of 102–50°C/min. In comparison, Ge2Sb2Te5 (GST) showed a nucleation-dominant crystallization. The na of CrGT was about 3, and was majorly independent of β. The na of GST decreased with an increasing p, which asymptotically approached a value of around 3. The kinetic constant of CrGT was evaluated to be almost the same with that of GST, indicating that CrGT undergoes fast crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, and R.S. Shenoy: Overview of candidate device technologies for storage-class memory. IBM J. Res. & Dev. 52, 449 (2008).

    Article  Google Scholar 

  2. M. Wuttig and N. Yamada: Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007).

    Article  CAS  Google Scholar 

  3. H.-S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, and K.E. Goodson: Phase change memory. Proc. IEEE 98, 2201 (2010).

    Article  Google Scholar 

  4. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao: Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849 (1991).

    Article  CAS  Google Scholar 

  5. A.L. Lacaita: Phase change memories: State-of-the-art, challenges and perspectives. Solid-State Electron. 50, 24 (2006).

    Article  CAS  Google Scholar 

  6. S. Hatayama, Y. Sutou, S. Shindo, Y. Saito, Y.-H. Song, D. Ando, and J. Koike: Inverse resistance change Cr2Ge2Te6-based PCRAM enabling ultralow-energy amorphization. ACS Appl. Mater. Interfaces 10, 2725 (2018).

    Article  CAS  Google Scholar 

  7. N. Ohshima: Crystallization of germanium-antimony-tellurium amorphous thin film sandwiched between various dielectric protective films. J. Appl. Phys. 79, 8357 (1996).

    Article  CAS  Google Scholar 

  8. J. González-Hernández, E.F. Prokhorov, Y.V. Vorobiev, E. Morales-Sánchez, A. Mendoza-Galván, S.A. Kostylev, Y.I. Gorobets, V.N. Zakharchenko, and R.V. Zakharchenko: Mechanism of the isotermic amorphous-to-crystalline phase transition in Ge:Sb:Te ternary alloys. J. Vac. Sci. Technol. A 19, 1623 (2001).

    Article  Google Scholar 

  9. J. Orava, A.L. Greer, B. Gholipour, D.W. Hewak, and C.E. Smith: Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279 (2012).

    Article  CAS  Google Scholar 

  10. D.W. Henderson: Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J. Non-Cryst. Solids 30, 301 (1979).

    Article  CAS  Google Scholar 

  11. T. Ozawa: A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881 (1965).

    Article  CAS  Google Scholar 

  12. T. Ozawa: Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. 2, 301 (1970).

    Article  CAS  Google Scholar 

  13. Y. Sutou, T. Kamada, M. Sumiya, Y. Saito, and J. Koike: Crystallization process and thermal stability of Ge1Cu2Te3 amorphous thin films for use as phase change materials. Acta Mater. 60, 872 (2012).

    Article  CAS  Google Scholar 

  14. W. Lu, B. Yan, and W. Huang: Complex primary crystallization kinetics of amorphous Finemet alloy. J. Non-Cryst. Solids 351, 3320 (2005).

    Article  CAS  Google Scholar 

  15. S. Ranganathan and M.V. Heimendahl: The three activation energies with isothermal transformations: applications to metallic glass. J. Mater. Sci. 16, 2401 (1981).

    Article  CAS  Google Scholar 

  16. V.R.V. Ramanan and G.E. Fish: Crystallization kinetics in Fe-B-Si metallic glasses. J. Appl. Phys. 53, 2273 (1982).

    Article  CAS  Google Scholar 

  17. K.F. Kelton, A.L. Greer, and C.V. Thompson: Transient nucleation in condensed systems. J. Chem. Phys. 79, 6261 (1983).

    Article  CAS  Google Scholar 

  18. T. Hurst, M. Horie, and P.K. Khulbe: Crystallization of growth-dominant eutectic phase-change materials. Optical Data 77–79 (2000).

    Google Scholar 

  19. Y. Nishi, H. Kando, and M. Terao: Simulation of recrystallization in phase-change recording materials. Jpn. J. Appl. Phys. 41, 631 (2002).

    Article  CAS  Google Scholar 

  20. J.A. Augis, and J.E. Bennett: Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J. Therm. Anal. 13, 283 (1978).

    Article  CAS  Google Scholar 

  21. E.A. Marseglia: Kinetic theory of crystallization of amorphous materials. J. Non-Cryst. Solids 41, 31 (1980).

    Article  CAS  Google Scholar 

  22. Y.Q. Gao, and W. Wang: On the activation energy of crystallization in metallic glass. J. Non-Cryst. Solids 81, 129 (1986).

    Article  CAS  Google Scholar 

  23. G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R.S. Shenoy: Phase change memory technology. J. Vac. Sci. Technol. B 28, 223 (2010).

    Article  CAS  Google Scholar 

  24. H.-Y. Cheng, K.-F. Kao, C.-M. Lee, and T.-S. Chin: Crystallization kinetics of Ga-Sb-Te films for phase change memory. Thin Solid Films 516, 5513 (2008).

    Article  CAS  Google Scholar 

  25. S. Kasyap, S. Prajapati, and A. Pratap: Heating rate and composition dependence of crystallization temperature of cu-based metallic glass. Adv. Mater. Res. 1141, 156 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by KAKENHI (grant nos. 18H02053 and 17J02967).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sutou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatayama, S., Sutou, Y., Ando, D. et al. Crystallization mechanism and kinetics of Cr2Ge2Te6 phase change material. MRS Communications 8, 1167–1172 (2018). https://doi.org/10.1557/mrc.2018.176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.176

Navigation