Skip to main content
Log in

Experimental determination of phonon thermal conductivity and Lorenz ratio of single-crystal bismuth telluride

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We use a magnetothermal resistance method to measure the lattice thermal conductivity of single-crystal Bi2Te3 from 5 to 60 K. Lattice thermal conductivity is calculated by extrapolating the thermal conductivity versus electrical conductivity curve to a zero electrical conductivity value. Our results show that the measured phonon thermal conductivity follows the e΄min/T temperature dependence and the Lorenz ratio corresponds to the modified Sommerfeld value in the intermediate temperature range. Our low-temperature experimental data and analysis on Bi2Te3 are a complement to previous measurements of Goldsmid (Ref. 17) and theoretical calculations by Hellman et al. (Ref. 18) at higher temperature 100-300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. E.M. Lifshitz and L.P. Pitaevskii: Physical Kinetics (Butterworth-Heinemann, Oxford, 1981).

    Google Scholar 

  2. T.M. Tritt: Thermal Conductivity: Theory, Properties, and Applications (Kluwer Academic/Plenum Publishers, New York, 2004).

    Book  Google Scholar 

  3. K.C. Lukas, W.S. Liu, G. Joshi, M. Zebarjadi, M.S. Dresselhaus, Z.F. Ren, G. Chen, and C.P. Opeil: Experimental determination of the Lorenz number in Cu0.01Bi2Te2.7Se0.3 and Bi0.88Sb0.12. Phys. Rev. B 85, 205410 (2012).

    Article  Google Scholar 

  4. M. Yao, M. Zebarjadi, and C. Opeil: Experimental determination of phonon thermal conductivity and Lorenz ratio of single crystal metals: Al, Cu and Zn. J. Appl. Phys. 122, 135111 (2017).

    Article  Google Scholar 

  5. C. Uher and H.J. Goldsmid: Separation of the electronic and lattice thermal conductivities in bismuth crystals. Phys. Stat. Solidi (b) 65, 765 (1974).

    Article  CAS  Google Scholar 

  6. A.B. Pippard: Magnetoresistance in Metals (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  7. Q. Zhang, Y. Lan, S. Yang, F. Cao, M. Yao, C. Opeil, D. Broido, G. Chen, and Z. Ren: Increased thermoelectric performance by Cl doping in nanostructured AgPb18SbSe20-xClx. Nano Energy 2, 1121 (2013).

    Article  CAS  Google Scholar 

  8. W. Liu, C.F. Guo, M. Yao, Y. Lan, H. Zhang, Q. Zhang, S. Chen, C.P. Opeil, and Z. Ren: Bi2S3 nanonetwork as precursor for improved thermoelectric performance. Nano Energy 4, 113 (2014).

    Article  CAS  Google Scholar 

  9. W. Liu, H.S. Kim, S. Chen, Q. Jie, B. Lv, M. Yao, Z. Ren, C.P. Opeil, S. Wilson, C.-W. Chu, and Z. Ren: n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation. Proc. Natl. Acad. Sci. USA 112, 3269 (2015).

    Article  CAS  Google Scholar 

  10. Q. Zhang, E.K. Chere, K. McEnaney, M. Yao, F. Cao, Y. Ni, S. Chen, C. Opeil, G. Chen, and Z. Ren: Enhancement of thermoelectric performance of n-type PbSe by Cr doping with optimized carrier concentration. Adv. Energy Mater. 5, 1401977 (2015).

    Article  Google Scholar 

  11. D. Armitage and H.J. Goldsmid: The thermal conductivity of cadmium arsenide. J. Phys. C 2, 2138 (1969).

    Article  CAS  Google Scholar 

  12. J.D. Keys and H.M. Dutton: Diffusion and solid solubility of silver in single-crystal bismuth telluride. J. Phys. Chem. Solids 24, 563 (1963).

    Article  CAS  Google Scholar 

  13. H.P. Dibbs and J.R. Tremblay: Thermal diffusion of silver in single-crystal bismuth telluride. J. Appl. Phys. 39, 2976 (1968).

    Article  CAS  Google Scholar 

  14. W. Lin, D. Wesolowski, and C. Lee: Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules. J. Mater. Sci.: Mater. Electron 22, 1313 (2011).

    CAS  Google Scholar 

  15. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438 (2009).

    Article  CAS  Google Scholar 

  16. S. Ishiwata, Y. Shiomi, J.S. Lee, M.S. Bahramy, T. Suzuki, M. Uchida, R. Arita, Y. Taguchi, and Y. Tokura: Extremely high electron mobility in a phonon-glass semimetal. Nature Mater. 12, 512 (2013).

    Article  CAS  Google Scholar 

  17. H. Goldsmid: The thermal conductivity of bismuth telluride. Proc. Phys. Soc. Sec. B 69, 203 (1956).

    Article  Google Scholar 

  18. O. Hellman and D.A. Broido: Phonon thermal transport in Bi2Te3 from first principles. Phys. Rev. B 90, 134309 (2014).

    Article  Google Scholar 

  19. P.J. Price: Anomalous Lorenz numbers in mixed semiconductors. Proc. Phys. Soc. Sec. B 69(8), 851 (1956).

    Article  Google Scholar 

  20. N.F. Hinsche, I. Mertig, and P. Zahn: Lorenz function of Bi2Te3/Sb2Te3 superlattices. J. Electron. Mater. 42, 1406 (2013).

    Article  CAS  Google Scholar 

  21. T.C. Harman, B. Paris, S.E. Miller, and H.L. Georing: Preparation and some physical properties of Bi2Te3, Sb2Te3, and As2Te3. J. Phys. Chem. Solids 2, 181 (1957).

    Article  CAS  Google Scholar 

  22. E.H. Putley: Galvano- and thermo-magnetic coefficients for a multi-band conductor. J. Phys. C: Solid State Phys. 8, 1837 (1975).

    Article  Google Scholar 

  23. T.C. Harman and J.M. Honig: Theory of Galvano-thermomagnetic energy conversion devices. I. Generators. J. Appl. Phys. 33, 3178 (1962).

    Article  Google Scholar 

  24. T.C. Harman and J.M. Honig: Theory of Galvano-thermomagnetic energy conversion devices. II. Refrigerators and heat pumps. J. Appl. Phys. 33, 3188 (1962).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Solid State Solar–Thermal Energy Conversion Center (S3TEC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under award number DE-SC0001299. C.P.O. would like to thank Robert D. Farrell, S.J. and Christopher Noyes for helpful comments on the manuscript, and acknowledges financial support from the Trustees of Boston College. M.Y. is grateful to Ying Ran and Krzysztof Kempa for helpful discussions and comments on the manuscript. The work at the University of Virginia is supported by the Air Force Young Investigator Award, grant number FA9550-14-1-0316. Stephen Wilson acknowledges support from NSF CAREER Grant No. DMR-1056625.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Opeil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, M., Opeil, C., Wilson, S. et al. Experimental determination of phonon thermal conductivity and Lorenz ratio of single-crystal bismuth telluride. MRS Communications 7, 922–927 (2017). https://doi.org/10.1557/mrc.2017.118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.118

Navigation