Skip to main content
Log in

Dynamics of interacting interphases in polymer bilayer thin films

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We investigate how the local glass-transition temperature (T{ing}) depends on film thickness in monolayer and bilayer thin films with a polystyrene (PS) upper-layer and a poly(methyl methacrylate) (PMMA) lower-layer using coarse-grained simulations. Interactions between overlapping interphases demonstrate a superposition principle for describing their glass-transition behaviors. For supported bilayer films, the free surface effect on a PS film upper-layer is effectively eliminated due to an enhanced local T{ing} near the PS-PMMA interface, which cancels out depressed T{ing} near the free surface. However, at very low PMMA lower-layer thicknesses, the PMMA-substrate effect can penetrate through the polymer-polymer interface, leading to enhanced T{ing} in the PS upper-layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. M. Ediger and J. Forrest: Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromol. 47, 471 (2013).

    Article  Google Scholar 

  2. C.J. Ellison and J.M. Torkelson: The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695 (2003).

    Article  CAS  Google Scholar 

  3. J. Forrest, K. Dalnoki-Veress, J. Stevens, and J. Dutcher: Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002 (1996).

    Article  CAS  Google Scholar 

  4. P.Z. Hanakata, J.F. Douglas, and F.W. Starr: Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films. Nat. Commun. 5, 4163 (2014).

    Article  Google Scholar 

  5. D.D. Hsu, W. Xia, J. Song, and S. Keten: Glass-transition and side-chain dynamics in thin films: explaining dissimilar free surface effects for polystyrene vs poly (methyl methacrylate). ACS Macro Lett. 5, 481 (2016).

    Article  CAS  Google Scholar 

  6. K. Paeng and M. Ediger: Molecular motion in free-standing thin films of poly (methyl methacrylate), poly (4-tert-butylstyrene), poly (α-methylstyrene), and poly (2-vinylpyridine). Macromol. 44, 7034 (2011).

    Article  CAS  Google Scholar 

  7. K. Paeng, R. Richert, and M. Ediger: Molecular mobility in supported thin films of polystyrene, poly (methyl methacrylate), and poly (2-vinyl pyridine) probed by dye reorientation. Soft Mat. 8, 819 (2012).

    Article  CAS  Google Scholar 

  8. W. Xia, S. Mishra, and S. Keten: Substrate vs. free surface: competing effects on the glass transition of polymer thin films. Polymer 54, 5942 (2013).

    Article  CAS  Google Scholar 

  9. C. Ye, C.G. Wiener, M. Tyagi, D. Uhrig, S.V. Orski, C.L. Soles, B.D. Vogt, and D.S. Simmons: Understanding the decreased segmental dynamics of supported thin polymer films reported by incoherent neutron scattering. Macromol. 48, 801 (2015).

    Article  CAS  Google Scholar 

  10. C.B. Roth, K.L. McNerny, W.F. Jager, and J.M. Torkelson: Eliminating the enhanced mobility at the free surface of polystyrene: fluorescence studies of the glass transition temperature in thin bilayer films of immiscible polymers. Macromol. 40, 2568 (2007).

    Article  CAS  Google Scholar 

  11. H. Yoon, and G.B. McKenna: Substrate effects on glass transition and free surface viscoelasticity of ultrathin polystyrene films. Macromol. 47, 8808 (2014).

    Article  CAS  Google Scholar 

  12. N.B. Tito, J.E. Lipson, and S.T. Milner: Lattice model of mobility at interfaces: free surfaces, substrates, and bilayers. Soft Mat. 9, 9403 (2013).

    Article  CAS  Google Scholar 

  13. C.B. Roth, and J.M. Torkelson: Selectively probing the glass transition temperature in multilayer polymer films: equivalence of block copolymers and multilayer films of different homopolymers. Macromol. 40, 3328 (2007).

    Article  CAS  Google Scholar 

  14. R.R. Baglay, and C.B. Roth: Communication: experimentally determined profile of local glass transition temperature across a glassy-rubbery polymer interface with a Tg difference of 80 K. J. Chem. Phys. 143, 111101 (2015).

    Article  Google Scholar 

  15. R.R. Baglay, and C.B. Roth: Local glass transition temperature Tg (z) of polystyrene next to different polymers: hard vs. soft confinement. J. Chem. Phys. 146, 203307 (2017).

    Article  Google Scholar 

  16. R.J. Lang, W.L. Merling, and D.S. Simmons: Combined dependence of nanoconfined Tg on interfacial energy and softness of confinement. ACS Macro Lett. 3, 758 (2014).

    Article  CAS  Google Scholar 

  17. R.P. White, C.C. Price, and J.E. Lipson: Effect of interfaces on the glass transition of supported and freestanding polymer thin films. Macromol. 48, 4132 (2015).

    Article  CAS  Google Scholar 

  18. D.D. Hsu, W. Xia, S.G. Arturo, and S. Keten: Systematic method for thermomechanically consistent coarse-graining: a universal model for methacrylate-based polymers. J. Chem. Theory Comput. 10, 2514 (2014).

    Article  CAS  Google Scholar 

  19. D.D. Hsu, W. Xia, S.G. Arturo, and S. Keten: Thermomechanically consistent and temperature transferable coarse-graining of atactic polystyrene. Macromol. 48, 3057 (2015).

    Article  CAS  Google Scholar 

  20. M.C. Payne, M.P. Teter, D.C. Allan, T. Arias, and J. Joannopoulos: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).

    Article  CAS  Google Scholar 

  21. W.G. Hoover: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).

    Article  CAS  Google Scholar 

  22. S. Plimpton and B. Hendrickson: A new parallel method for molecular dynamics simulation of macromolecular systems. J. Comput. Chem. 17, 326 (1996).

    Article  CAS  Google Scholar 

  23. M. Marvin, R. Lang, and D. Simmons: Nanoconfinement effects on the fragility of glass formation of a model freestanding polymer film. Soft Mat. 10, 3166 (2014).

    Article  CAS  Google Scholar 

  24. Y. Zhou and S.T. Milner: Short-time dynamics reveals Tg suppression in simulated polystyrene thin films. Macromol. 50, 5599 (2017).

    Article  CAS  Google Scholar 

  25. J. DeFelice, S.T. Milner, and J.E.G. Lipson: Simulating local Tg reporting layers in glassy thin films. Macromol. 49, 1822 (2016).

    Article  CAS  Google Scholar 

  26. A.N. Rissanou and V. Harmandaris: Structural and dynamical properties of polystyrene thin films supported by multiple graphene layers. Macromol. 48, 2761 (2015).

    Article  CAS  Google Scholar 

  27. W. Xia, J. Song, D.D. Hsu, and S. Keten: Side-group size effects on interfaces and glass formation in supported polymer thin films. J. Chem. Phys. 146, 203311 (2017).

    Article  Google Scholar 

  28. J.A. Forrest and J. Mattsson: Reductions of the glass transition temperature in thin polymer films: probing the length scale of cooperative dynamics. Phys. Rev. E 61, R53 (2000).

    Article  CAS  Google Scholar 

  29. P. Ellingson, D. Strand, A. Cohen, R. Sammler, and C. Carriere: Molecular weight dependence of polystyrene/poly (methyl methacrylate) interfacial tension probed by imbedded-fiber retraction. Macromol. 27, 1643 (1994).

    Article  CAS  Google Scholar 

  30. S.H. Anastasiadis, T.P. Russell, S.K. Satija, and C.F. Majkrzak: The morphology of symmetric diblock copolymers as revealed by neutron reflectivity. J. Chem. Phys. 92, 5677 (1990).

    Article  CAS  Google Scholar 

  31. M. Fernandez, J. Higgins, J. Penfold, R. Ward, C. Shackleton, and D. Walsh: Neutron reflection investigation of the interface between an immiscible polymer pair. Polymer 29, 1923 (1988).

    Article  CAS  Google Scholar 

  32. M.Z. Slimani, A.J. Moreno, and J. Colmenero: Heterogeneity of the segmental dynamics in lamellar phases of diblock copolymers. Macromol. 44, 6952 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge support by the Dow Chemical Company and from the Department of Civil & Environmental Engineering, Mechanical Engineering and Materials Science and Engineering at Northwestern University. The authors acknowledge support by the National Institute of Standards and Technology (NIST) through the Center for Hierarchical Materials Design (CHiMaD). W.X. gratefully acknowledges the support from the NIST-CHiMaD Postdoctoral Fellowship. A supercomputing grant from Quest HPC System at Northwestern University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Keten.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.113

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, D.D., Xia, W., Song, J. et al. Dynamics of interacting interphases in polymer bilayer thin films. MRS Communications 7, 832–839 (2017). https://doi.org/10.1557/mrc.2017.113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.113

Navigation