Skip to main content
Log in

Phase field modeling of intercalation kinetics: a finite interface dissipation approach

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

When two materials interact, the processes between the phases determine the functional properties of the compound. Pivotal interface phenomena are diffusion and redistribution of atoms (molecules). This is especially of interest in Lithium ion batteries where the interfacial kinetics determines the battery performance and impact cycling stability. A new phase field model, which links the atomistic processes at the interface to the mesoscale transport by a redistribution flux controlled by the so called ’interface permeability’ was developed. The model was validated with experimental data from diffusion couples. Calculations of the concentration profiles of the species at the electrode-electrolyte interface are reported. Active particle size, morphology and spatial arrangement were put in correlation with diffusion behavior for use in reverse engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Table I
Table II
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. M.S. Whittingham: Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article  CAS  Google Scholar 

  2. W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma: Phase field simulation of solidification. Ann. Rev. Mater. Res. 32, 163–194 (2002).

    Article  CAS  Google Scholar 

  3. L.-Q. Chen: Phase field models for microstructure evolution. Ann. Rev. Mater. Res. 32, 113–140 (2002).

    Article  CAS  Google Scholar 

  4. S.L Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R. J. Braun, and G.B. McFadden: Thermodynamically consistent phase field models for solidification. Physica D: Nonlinear Phenomena 69, 189–200 (1993).

    Article  Google Scholar 

  5. I. Steinbach: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17, 073001 (2009).

    Article  CAS  Google Scholar 

  6. V.I. Levitas and A.M. Roy: Multiphase phase field theory for temperature-and stress induced phase transformations. Phys. Rev. B 91, 174109 (2015).

    Article  CAS  Google Scholar 

  7. K. Momeni and V.I. Levitas: A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses. Phys. Chem. Chem. Phys. 18, 12183–12203 (2016).

    Article  CAS  Google Scholar 

  8. C. Denouai and A. Vattré: A phase field approach with a reaction pathways-based potential to model reconstructive martensitic transformations with a large number of variants. J. Mech. Phys. Solids 90, 91–107 (2016).

    Article  CAS  Google Scholar 

  9. V.I. Levitas and K. Samani: Size and mechanics effects in surface-induced melting of nanoparticles. Nat. Commun. 2, 284 (2011).

    Article  CAS  Google Scholar 

  10. K. Momeni, VI. Levitas, and J.A. Warren: The strong influence of internal stresses on the nucleation of a nanosized, deeply undercooled melt at a solid-solid phase interface. Nano Lett. 15, 2298–2303 (2015).

    Article  CAS  Google Scholar 

  11. L.-Q. Chen and W. Yang: Computer simulation of the domain dynamics of quenched system with a large number of nonconserved order parameters: the grain-growth kinetics. Phys. Rev. B 50, 15752 (1994).

    Article  CAS  Google Scholar 

  12. E. Miyoshia and T. Takaki: Validation of a novel higher-order multi-phase-field model for grain-growth simulations using anisotropic grain-boundary properties. Comput. Mater. Sci. 112, 44–51 (2016).

    Article  Google Scholar 

  13. L. Chen and S. Hu: Solute segregation and coherent nucleation and growth near a dislocation: a phase-field model integrating defect and phase microstructures. Acta Mater. 49, 463–472 (2001).

    Article  Google Scholar 

  14. D. Rodney, Y. Le Bouar, and A. Finel: Phase field methods and dislocations. Acta Mater. 51, 17–30 (2003).

    Article  CAS  Google Scholar 

  15. L. Wang, Z. Liu and Z. Zhuang: Developing micro-scale crystal plasticity model based on phase field theory for modeling dislocations in heteroe-pitaxial structures. Int. J. Plasticity 81, 267–283 (2016).

    Article  Google Scholar 

  16. Y. Jin, Y. Wang, and A. Khachaturyan: Three-dimensional phase field microelasticity theory and modelling of multiple cracks and voids. Appl. Phys. Lett. 79, 3071 (2001).

    Article  CAS  Google Scholar 

  17. H. Levine and H. Henry: Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys. Rev. Lett. 93, 105504 (2004).

    Article  CAS  Google Scholar 

  18. B. Pattern, A. Kazaryan, and Y. Wang: Generalized phase field approach for computer simulation of sintering: incorporation of rigid-body motion. Scripta Mater. 41, 487–492 (1999).

    Article  Google Scholar 

  19. X.N. Jing, J.H. Zhao, G. Subhash, and X.L. Gao: Anisotropic grain growth with pore drag under applied loads. Mater. Sci. Eng. A 412, 271–278 (2005).

    Article  CAS  Google Scholar 

  20. Y. Wang: Computer modeling and simulation of solid-state sintering: a phase field approach. Acta Mater. 54, 953–961 (2006).

    Article  CAS  Google Scholar 

  21. Q. Du, C. Liu, and X. Wang: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212, 757–777 (2006).

    Article  Google Scholar 

  22. T. Biben, K. Kassner, and C. Misbah: Phase-field approach to three dimensional vesicle dynamics. Phys. Rev. Ell, 041921 (2005).

    Google Scholar 

  23. J. Guyer, W. Boettinger, J. Warren, and G. McFadden: Phase field modeling of electrochemistry I: equilibrium. Phys. Rev. E 69, 021603 (2004).

    Article  CAS  Google Scholar 

  24. J. Guyer, W. Boettinger, J. Warren, and G. McFadden: Phase field modeling of electrochemistry II: kinetics. Phys. Rev. E 69, 021604 (2004).

    Article  CAS  Google Scholar 

  25. W. Pongsaksawad, A.C. Powell, and D. Dussault: Phase-field modeling of transport-limited electrolysis in solid and liquid states. J. Electrochem. Soc. 154, F122 (2007).

    Article  CAS  Google Scholar 

  26. Y. Shibuta, Y. Okajima, and T. Suzuki: Phase field modeling for electrode-position process. Sci. Technol. Adv. Mater. 8, 511–518 (2007).

    Article  CAS  Google Scholar 

  27. I. Steinbach, L. Zhang, and M. Plapp: Phase-field model with finite interface dissipation. Acta Mater. 60, 2689–2701 (2012).

    Article  CAS  Google Scholar 

  28. L Zhang and I. Steinbach: Phase-field model with finite interface dissipation: extension to multi-component multi-phase alloys. Acta Mater. Elsevier Ltd. 60, 2702–2710 (2012).

    Article  CAS  Google Scholar 

  29. U. Preiss, E. Borukhovich, N. Alemayehu, and I. Steinbach: A permeation model for the electrochemical interface. Model. Simul. Mater. Sci. Eng. 21, 4006 (2013).

    Article  Google Scholar 

  30. I. Steinbach and M. Apel: Phase-field simulation of rapid crystallization of silicon on substrate. Mater. Sci. Eng. A, Elsevier Sci. SA, Lausanne 449, 95–98 (2007).

    Article  CAS  Google Scholar 

  31. I. Steinbach: Phase field model for microstructure evolution at the mesoscopic scale. Ann. Rev. Mater. Res. 43, 89–107 (2013).

    Article  CAS  Google Scholar 

  32. J. Tiaden, B. Nestler, H.J. Diepers, and I. Steinbach: The multiphase-field model with an integrated concept for modelling solute diffusion. Physica D: Nonlinear Phenomena 115, 73–86 (1998).

    Article  CAS  Google Scholar 

  33. I. Steinbach, F. Pezzolla, B. Nestler, M. Seesselberg, R. Prieler, G.J. Schmitz, and J.L.L. Rezende: A phase field concept for multiphase systems. Physica D: Nonlinear Phenomena 94, 135–147 (1996).

    Article  Google Scholar 

  34. I. Steinbach and F. Pezzolla: A generalized field method for multiphase transformations using interface fields. Physica D: Nonlinear Phenomenal, 385–393 (1999).

    Google Scholar 

  35. I. Steinbach, B. Boetinger, J. Eiken, N. Warnken, and S.G. Fries: CALPHAD and phase-field modeling: a successful Liaison. J. Phase Equilibria Diff. 28, 101–106 (2007).

    Article  CAS  Google Scholar 

  36. J. Eiken, B. Boetiger, and I. Steinbach: Multiphase-field approach for mul-ticomponent alloys with extrapolation scheme for numerical application. Phys. Rev. £73, 066122 (2006).

    Google Scholar 

  37. W.J. Boettinger and J.A. Warren: Simulation of the cell to plane front transition during directional solidification at high velocity. J. Cryst. Growth 200, 583–591 (1999).

    Article  CAS  Google Scholar 

  38. J.W. Gahn and J.C. Baker: Solute trapping by rapid solidification. Acta. Metall. 17, 575 (1969).

    Article  Google Scholar 

  39. J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Thompson: Complete experimental test for kinetic models of rapid alloy solidification. Acta Mater. 48, 4797 (2000).

    Article  CAS  Google Scholar 

  40. C.-W. Wang and A.M. Sastry: Mesoscale modeling of a Li-ion polymer cell. J. Electrochem. Soc. 154, A1035–A1047 (2007).

    Article  CAS  Google Scholar 

  41. G.K. Singh, G. Ceder, and M.Z. Bazant: Intercalation dynamics in rechargeable battery materials: General theory and phase transformation in LiFePO4. Electrochim. Acta S3, 7599–7613 (2008).

    Google Scholar 

  42. M.Z. Bazant: Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46, 1144–1160 (2013).

    Article  CAS  Google Scholar 

  43. V. Noel and M. Rajendran: A comprehensive model for cyclic voltammetric study of intercalation/de-intercalation. J. Power Sources 88, 243–249 (2000).

    Article  CAS  Google Scholar 

  44. S. Flandrois: Graphite intercalation compounds as electrode materials in batteries. Synth. Met. 4, 255 (1982).

    Article  CAS  Google Scholar 

  45. J.R. Macdonald: Impedance spectroscopy. Ann. Biomed. Eng. 20, 289–305 (1992).

    Article  CAS  Google Scholar 

  46. S.M. Park and J.S. Yoo: Electrochemical impedance spectroscopy for better electro-chemical measurements. Anal. Chem. 75, 455A–461A (2003).

    CAS  Google Scholar 

  47. A. Lasia: Electrochemical impedance spectroscopy and its applications. Modern Asp. Electrochem. 32, 143–248 (1999).

    CAS  Google Scholar 

  48. C. Wang and J. Hong: Ionic/electronic conducting characteristics of LiFePO4 cathode materials. Electrochem. Solid-State Lett. 10, A65–A69 (2007).

    Article  CAS  Google Scholar 

  49. W. Vielstich, C.H. Hamann, and A. Hamnett: Electrochemistry (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  50. Y. Zhu and C. Wang: Novel CV for phase transformation electrodes. J. Phys. Chem. C 115, 823–832 (2011).

    Article  CAS  Google Scholar 

  51. E. Katz and I. Willner: Probing biomolecular interactions at conductive and semi-conductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15, 913–947 (2003).

    Article  CAS  Google Scholar 

  52. P. Paolo, M. Lisi, D. Zane and M. Pasquali: Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148, 45–51 (2002).

    Article  Google Scholar 

  53. S. Wang, Q. Wang, J. Liu, Z. Cheng, D. Si, and B. Geng: Kinetic manipulation of the morphology evolution of FePO4 microcrystals: from rugbies to porous microspheres. Cryst. Eng. Commun. 11, 2510 (2009).

    Article  CAS  Google Scholar 

  54. B.L. Ellis, W.R. Michael Makahnouk, W.N. Rowan-Weetaluktuk, D.H. Ryan, and L.F. Nazar: Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A=Na, Li; M=Fe, Mn, Co, Ni). Chem. Mater. 22, 1059–1070 (2010).

    Article  CAS  Google Scholar 

  55. B.L. Ellis, K.T. Lee, and L.F. Nazar: Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010).

    Article  CAS  Google Scholar 

  56. R. Malik, D. Burch, M. Bazant, and G. Ceder: Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010).

    Article  CAS  Google Scholar 

  57. N.N. Sinha and N. Munichandraiah: The effect of particle size on performance of cathode materials of Li-ion batteries. J. Indian Inst. Sci. 89, 381–392 (2009).

    CAS  Google Scholar 

  58. K.T. Lee and J. Cho: Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Todays, 28–41 (2011).

    Google Scholar 

  59. K. Kai, Y. Kobayashi, H. Miyashiro, G. Oyama, S. Nishimura, M. Okubo, and A. Yamada: Particle-size effects on the entropy behavior of a LixFePO4 electrode. Chem. Phys Chem 15, 2156–2161 (2014).

    Article  CAS  Google Scholar 

  60. W. Dua, A. Gupta, X. Zhang, A.M. Sastry, and W. Shyy: Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance. Int. J. Heat Mass Transf. 53, 3552–3561 (2010).

    Article  CAS  Google Scholar 

  61. I. Bloom, B.W. Cole, J.J. Sohn, S.A. Jones, E.G. Polzin, V.S. Battaglia, G.L. Henriksen, C. Motloch, R. Richardson, T. Unkelhaeuser, D. Ingersoll, and H.L. Case: An accelerated calendar and cycle life study of Li-ion cells. J. Power Sources 101, 238–247 (2001).

    Article  CAS  Google Scholar 

  62. P. Ramadass, B. Haran, R. White, and B.N. Popov: Mathematical modeling of the capacity fades of Li-ion cells. J. Power Sources 123, 230–240 (2003).

    Article  CAS  Google Scholar 

  63. R.P. Ramasamy, R.E. White, and B.N. Popov: Calendar life performance of pouch lithium-ion cells. J. Power Sources 141, 298–306 (2005).

    Article  CAS  Google Scholar 

  64. D.P. Abraham, J. Liu, C.H. Chen, Y.E. Hyung, M. Stall, N. Elsen, S. MacLaren, R. Twesten, R. Haasch, E. Sammann, I. Petrov, K. Amine, and G. Henriksen: Diagnosis of power fade mechanisms in high-power lithium-ion cells. J. Power Sources 119, 511–516 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thank Dr. Ulrich Preiss for contributing to the model development and for useful discussions. We acknowledge financial support through the International Max Planck Institute for Surface and Interface Engineering of Materials (IMPRS-SurMat) and ICAMS and Addis Ababa University for supporting the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nega A. Zerihun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerihun, N.A., Steinbach, I. Phase field modeling of intercalation kinetics: a finite interface dissipation approach. MRS Communications 6, 270–282 (2016). https://doi.org/10.1557/mrc.2016.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.31

Navigation