Skip to main content
Log in

Biosensing using photonic crystal nanolasers

  • Plasmonics, Photonics, and Metamaterials Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Photonic crystal nanolasers are fabricated and operated simply, and can be applied as disposable sensors for biomedical applications. They are sensitive to the change with environmental index and surface charge. Functionalizing the nanolaser surface with an antibody, the specific binding of target antigen is detected with a detection limit 2-4 orders lower than that achieved by current standard methods, enzyme-linked immuno-sorbent assay. Nanolasers also detect negatively-charged deoxyribonucleic acid from their emission intensity. This technique requires neither labels nor spectroscopy, which simplifies screening procedures. Its applicability for high-speed detection of endotoxin and for label-fee imaging of living cells are also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Table I

Similar content being viewed by others

References

  1. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D. Meade: Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2008).

    Book  Google Scholar 

  2. E. Yablonovitch: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).

    Article  CAS  Google Scholar 

  3. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim: Two-dimensional photonic band-Gap defect mode laser. Science 284, 1819 (1999).

    Article  CAS  Google Scholar 

  4. K. Nozaki, S. Kita, and T. Baba: Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506 (2007).

    Article  Google Scholar 

  5. S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba: Photonic crystal point-shift nanolaser with and without nanoslots-design, fabrication, lasing and sensing characteristics. IEEE J. Sel. Top. Quantum Electron. 17, 1632 (2011).

    Article  CAS  Google Scholar 

  6. K. Watanabe, S. Hachuda, T. Isono, and T. Baba: Photonic crystal nanolaser sensors with ALD coating; Tech. Dig. CLEO-PR, TuJ2-2 (2013).

    Book  Google Scholar 

  7. M. Narimatsu, S. Kita, H.Abe, and T. Baba: Enhancement of vertical emission in photonic crystal nanolasers. Appl. Phys. Lett. 100, 121117 (2012).

    Article  Google Scholar 

  8. T. Watanabe, H. Abe, Y. Nishijima, and T. Baba: Array integration of thousands of photonic crystal nanolasers. Appl. Phys. Lett. 104, 121108 (2014).

    Article  Google Scholar 

  9. M. Loncar, A. Scherer, and Y. Qiu: Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648 (2003).

    Article  CAS  Google Scholar 

  10. S. Kita, K. Nozaki, and T. Baba: Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration. Opt. Express 16, 8174 (2008).

    Article  Google Scholar 

  11. S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba: Super-sensitivity in label-free protein sensing using nanoslot nanolaser. Opt. Express, 19, 17683 (2011).

    Article  CAS  Google Scholar 

  12. S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima, and T. Baba: Selective detection of sub-atto-molar streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors. Opt. Express 21, 12815 (2013).

    Article  CAS  Google Scholar 

  13. K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba: Simultaneous detection of refractive index and surface charges in nanolaser biosensors. Appl. Phys. Lett. 106, 021106 (2015).

    Article  Google Scholar 

  14. R.M. Lequin: Enzyme immunoassay (EIA)/enzyme- linked immunosorbent assay (ELISA). Clin. Chem. 51, 2415 (2005).

    Article  CAS  Google Scholar 

  15. S. Hachuda, T. Watanabe, D. Takahashi, and T. Baba: Ultra-sensitive and selective detection of prostate specific antigen beyond ELISA using photonic crystal nanolaser, Tech. Dig. CLEO, AMIJ. 3 (2015).

    Google Scholar 

  16. T. Isono, S. Hachuda, K. Watanabe, N. Yamashita, Y. Goshima, and T. Baba: Specific detection of marker protein related with Alzheimer’s disease using photonic crystal nanolaser sensor array, Tech. Dig. MRS Annual Meet, K5.09 (2013).

    Google Scholar 

  17. T. Isono, S. Hachuda, K. Watanabe, N. Yamashita, Y. Goshima, and T. Baba: Specific detection of marker protein related with Alzheimer’s disease using nanolaser sensor array based on photonic crystal (II); Tech. Dig. JSAP Spring Meet, 19p-E15-10 (2014).

    Google Scholar 

  18. T. Isono, N. Yamashita, M. Obara, T. Araki, F. Nakamura, Y. Kamiya, T. Alkam, A. Nitta, T. Nabeshima, K. Mikoshiba, T. Ohshima, and Y. Goshima: Amyloid-β25-35 induces impairment of cognitive function and long-term potentiation through phosphorylation of collapsin response mediator protein 2. Neurosci. Res. 77, 180 (2013).

    Article  CAS  Google Scholar 

  19. B. Beutler and E.T. Rietschel: Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3, 169 (2003).

    Article  CAS  Google Scholar 

  20. D. Takahashi, S. Hachuda, T. Watanabe, Y. Nishijima, and T. Baba: Detection of endotoxin using a photonic crystal nanolaser. Appl. Phys. Lett. 106, 131112 (2015).

    Article  Google Scholar 

  21. H. Abe, M. Narimatsu, T. Watanabe, T. Furumoto, Y. Yokouchi, Y. Nishijima, S. Kita, A. Tomitaka, S. Ota, Y. Takemura, and T. Baba: Living-cell imaging using a photonic crystal nanolaser array. Opt. Express 23, 17056 (2015).

    Article  CAS  Google Scholar 

  22. W.C. Lau, K.T. Young, A. Baev, R. Hu, and P.N. Prasad: Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nano-rods. Opt. Express 17, 19041 (2009).

    Article  Google Scholar 

  23. G.A.J. Besselink, R.P.H. Kooyman, P.J. van Os, G.H.M. Engbers, and R.B. M. Schasfoorta: Signal amplification on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-specific antigen Anal. Biochem. 333, 165 (2004).

    CAS  Google Scholar 

  24. D.S. Grubisha, R.J. Lipert, H.Y. Park, J. Driskell, and M.D. Porter: Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem. 75, 5936 (2003).

    Article  CAS  Google Scholar 

  25. S.W. Lee, K.S. Lee, J. Ahn, J.J. Lee, M.G. Kim, and Y.B. Shin: Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano 5, 897 (2011).

    Article  CAS  Google Scholar 

  26. M. Vestergaard, K. Kerman, D.K. Kim, H.M. Hiep, and E. Tamiya: 75. Detection of Alzheimer’s tau protein using localised surface plasmon resonance-based immunochip. Talantal, 74, 1038 (2008).

    Article  CAS  Google Scholar 

  27. T. Endo, S. Yamamura, K. Kerman, and E. Tamiya: Label-free cell-based assay using localized surface plasmon resonance biosensor. Anal. Chim. Acta 614, 182 (2008).

    Article  CAS  Google Scholar 

  28. A.M. Armani, R.P. Kulkarni, S.E. Fraser, R.C. Flagan, and K.J. Vahala: Label-free, single-molecule detection with optical micro-cavities. Science 317, 783 (2007).

    Article  CAS  Google Scholar 

  29. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman: Multiplexed antibody detection with an array of silicon-on-insulator microring resonators. IEEE Photon. J. 1, 225 (2009).

    Article  Google Scholar 

  30. N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L.H. Frandsen, and P. I. Borel: Photonic-crystal waveguide biosensor. Opt. Express 15, 3169 (2007).

    Article  CAS  Google Scholar 

  31. S. Zlatanovic, L.W. Mirkarimi, M.M. Sigalas, M.A. Bynum, E. Chow, K.M. Robotti, G.W. Burr, S. Esener, and A. Grot: Photonic crystal microcav-ity sensor for ultracompact monitoring of reaction kinetics and protein concentration. Sens. Act. B: Chem. 141, 13 (2009).

    Article  CAS  Google Scholar 

  32. S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R.T. Chen: Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors. Appl. Phys. Lett. 104, 191109 (2014).

    Article  Google Scholar 

  33. D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan: High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing. Appl. Phys. Lett. 105, 063118 (2014).

    Article  Google Scholar 

  34. J.P. Kim, B.Y. Lee, S. Hong, and S.J. Sim: Ultrasensitive carbon nanotube-based biosensors using antibody-binding gragments. Anal. Biochem. 381, 193 (2008).

    Article  CAS  Google Scholar 

  35. J.P. Kim, B.Y. Lee, J. Lee, S. Hong, and S.J. Sim: Enhancement of sensitivity and specificity by surface modification of carbon nanotube field effect transistors. Biosens. Bioelectron. 24, 3372 (2009).

    Article  CAS  Google Scholar 

  36. E. Stern, A. Vacic, N.K. Rajan, J.M. Criscione, J. Park, B.R. Ilic, D.J. Mooney, M.A. Reed, and T.M. Fahmy: Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5, 138 (2010).

    Article  CAS  Google Scholar 

  37. A. Kim, C.S. Ah, H.Y. Yu, J.H. Yang, L.B. Baek, C.G. Ahn, C.W. Park, M.S. Jun, and S. Lee: Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl. Phys. Lett. 91, 103901 (2007).

    Article  Google Scholar 

  38. T.W. Lin, P.J. Hsieh, C.L. Lin, Y.Y. Fang, J.X. Yang, C.C. Tsai, P.L. Chiang, C.Y. Pan, and Y.T. Chen: Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. Proc. Natl. Acad. Sci. U.S.A. 107, 1047 (2010).

    Article  CAS  Google Scholar 

  39. G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, and C.M. Lieber: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294 (2005).

    Article  CAS  Google Scholar 

  40. E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyremebak, D. B. Turner-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy, M.A. Reed: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. S. Kita, Dr. T. Isono, Mr. H. Abe, Mr. S. Hachuda, Mr. M. Narimatsu, Mr. S. Otsuka, Mr. K. Watanabe, Mr. T. Furumoto, Mr. T. Watanabe, Mr. Y. Kishi, Mr. D. Takahashi, Mr. Y. Furuta, Ms. M. Sakemoto, and Dr. Y. Nishijima (Yokohama National University); Dr. H. Misawa, Hokkaido University, Dr. T. Endo and Mr. Y. Imai (Tokyo Institute of Technology); and Dr. Y. Goshima (Yokohama City University) for their contributions to the development of nanolaser biosensors. This work was partly supported by the Grant-In-Aid #24226003 from MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Baba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, T. Biosensing using photonic crystal nanolasers. MRS Communications 5, 555–564 (2015). https://doi.org/10.1557/mrc.2015.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.73

Navigation