Skip to main content
Log in

Synthesis and thin-film self-assembly of radical-containing diblock copolymers

  • Polymers/Soft Matter Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Electronically active block polymers based on π-conjugated macromolecules have been investigated for applications where nanostructured electrodes are of prime import; however, controlling the nanoscale order of these materials has proven challenging. Here, we demonstrate that diblock copolymers that utilize a non-conjugated radical polymer moiety as the electronically active block assemble into ordered thin-film nanostructures. Specifically, the diblock copolymer polydimethylsiloxane-b-poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PDMS–PTMA) was synthesized via atom transfer radical polymerization to generate polymers with readily controlled molecular properties. Importantly, solvent annealing of the PDMS–PTMA thin films led to well-defined nanostructures with domain spacings of the order of ∼30–40 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Table I.
Figure 4.

Similar content being viewed by others

References

  1. J.G. Kennemur, L. Yao, F.S. Bates, and M.A. Hillmyer: Sub-5 nm domains in ordered poly(cyclohexylethylene)-block-poly(methyl methacrylate) block polymers for lithography. Macromolecules 47, 1411 (2014).

    Article  CAS  Google Scholar 

  2. J. Xu, T.P. Russell, B.M. Ockob, and A. Checco: Block copolymer selfassembly in chemically patterned squares. Soft Matter 7, 3915 (2011).

    Article  CAS  Google Scholar 

  3. M. Luo and T.H. Epps III: Directed block copolymer thin film selfassembly: emerging trends in nanopattern fabrication. Macromolecules 46, 7567 (2013).

    Article  CAS  Google Scholar 

  4. Y. Zhang, J.L. Sargent, B.W. Boudouris, and W.A. Phillip: Nanoporous membranes generated from self-assembled block polymer precursors: Quo Vadis? J. Appl. Polym. Sci. 132, 41683 (2015).

    Google Scholar 

  5. E.A. Jackson and M.A. Hillmyer: Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano 4, 3548 (2010).

    Article  CAS  Google Scholar 

  6. B.W. Boudouris, V. Ho, L.H. Jimison, M.F. Toney, A. Salleo, and R.A. Segalman: Real-time observation of poly(3-alkylthiophene) crystallization and correlation with transient optoelectronic properties. Macromolecules 44, 6653 (2011).

    Article  CAS  Google Scholar 

  7. C. Renaud, S.-J. Mougnier, E. Pavlopoulou, C. Brochon, G. Fleury, D. Deribew, G. Portale, E. Cloutet, S. Chambon, L. Vignau, and G. Hadziioannou: Block copolymer as a nanostructuring agent for high efficiency and annealing-free bulk heterojunction organic solar cells. Adv. Mater. 24, 2196 (2012).

    Article  CAS  Google Scholar 

  8. B.D. Olsen and R.A. Segalman: Self-assembly of rod–coil block copolymers. Mater. Sci. Eng. 62, 37 (2008).

    Article  Google Scholar 

  9. B.D. Olsen, X. Li, J. Wang, and R.A. Segalman: Thin film structure of symmetric rod-coil block copolymers. Macromolecules 40, 3287 (2007).

    Article  CAS  Google Scholar 

  10. M. Shah and V. Ganesan: Correlations between morphologies and photovoltaic properties of rod-coil block copolymers. Macromolecules 43, 543 (2010).

    Article  CAS  Google Scholar 

  11. C. Sinturel, D. Grosso, M. Boudot, H. Amenitsch, M.A. Hillmyer, A. Pineau, and M. Vayer: Structural transitions in asymmetric poly (styrene)-block-poly(lactide) thin films induced by solvent vapor exposure. ACS Appl. Mater. Interfaces 6, 12146 (2014).

    Article  CAS  Google Scholar 

  12. W.A. Phillip, M.A. Hillmyer, and E.L. Cussler: Cylinder orientation mechanism in block copolymer thin films upon solvent evaporation. Macromolecules 43, 7763 (2010).

    Article  CAS  Google Scholar 

  13. T. Suga, M. Sakata, K. Aoki, and H. Nishide: Synthesis of pendant radicaland ion-containing block copolymers via ring-opening metathesis polymerization for organic resistive memory. ACS Macro Lett. 3, 703 (2014).

    Article  CAS  Google Scholar 

  14. L. Rostro, L. Galicia, and B.W. Boudouris: Suppressing the environmental dependence of the open-circuit voltage in inverted polymer solar cells through a radical polymer anodic modifier. J. Polym. Sci. B, Pol. Phys. 53, 311 (2015).

    Article  CAS  Google Scholar 

  15. K. Oyaizu and H. Nishide: Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Adv. Mater. 21, 2339 (2009).

    Article  CAS  Google Scholar 

  16. T. Janoschka, M.D. Hager, and U.S. Schubert: Powering up the future: radical polymers for battery applications. Adv. Mater. 24, 6397 (2012).

    Article  CAS  Google Scholar 

  17. E.P. Tomlinson, M.E. Hay, and B.W. Boudouris: Radical polymers and their application to organic electronic devices. Macromolecules 47, 6145 (2014).

    Article  CAS  Google Scholar 

  18. W.-S. Young, P.J. Brigandi, and T.H. Epps III: Crystallization-induced lamellar-to-lamellar thermal transition in salt-containing block copolymer electrolytes. Macromolecules 41, 6276 (2008).

    Article  CAS  Google Scholar 

  19. S.N. Patel, A.E. Javier, and N.P. Balsara: Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes. ACS Nano 7, 6056 (2013).

    Article  CAS  Google Scholar 

  20. S.N. Patel, A.E. Javier, K.M. Beers, J.A. Pople, V. Ho, R.A. Segalman, and N.P. Balsara: Morphology and thermodynamic properties of a copolymer with an electronically conducting block: poly(3-ethylhexylthiophene)- block-poly(ethylene oxide). Nano Lett. 12, 4901 (2012).

    Article  CAS  Google Scholar 

  21. C. Singht, M. Goulian, A.J. Lid, and G.H. Fredrickson: Phase behavior of semiflexible diblock copolymers. Macromolecules 27, 2974 (1994).

    Article  Google Scholar 

  22. V. Ho, B.W. Boudouris, B.L. McCulloch, C.G. Shuttle, M. Burkhardt, M.L. Chabinyc, and R.A. Segalman: Poly(3-alkylthiophene) diblock copolymers with ordered microstructures and continuous semiconducting pathways. J. Am. Chem. Soc. 133, 9270 (2011).

    Article  CAS  Google Scholar 

  23. G. Hauffman, J. Rolland, J.-P. Bourgeois, A. Vlad, and J.-F. Gohy: Synthesis of nitroxide-containing block copolymers for the formation of organic cathodes. J. Polym. Sci. Pol. Chem. 51, 101 (2013).

    Article  CAS  Google Scholar 

  24. G. Hauffman, Q. Maguin, J.-P. Bourgeois, A. Vlad, and J.-F. Gohy: Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes. Macromol. Rapid Commun. 35, 228 (2014).

    Article  CAS  Google Scholar 

  25. L. Rostro, A.G. Baradwaj, and B.W. Boudouris: Controlled radical polymerization and quantification of solid state electrical conductivities of macromolecules bearing pendant stable radical groups. ACS Appl. Mater. Interfaces 5, 9896 (2013).

    Article  CAS  Google Scholar 

  26. F.S. Bates and G.H. Fredrickson: Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41, 525 (1990).

    Article  CAS  Google Scholar 

  27. J.M. Widin, M. Kim, A.K. Schmitt, E. Han, P. Gopalan, and M.K. Mahanthappa: Bulk and thin film morphological behavior of broad dispersity poly(styrene-b-methyl methacrylate) diblock copolymers. Macromolecules 46, 4472 (2013).

    Article  CAS  Google Scholar 

  28. A.L. Schmitt, M.H. Repollet-Pedrosa, and M.K. Mahanthappa: Polydispersity-driven block copolymer amphiphile self-assembly into prolate-spheroid micelles. ACS Macro Lett. 1, 300 (2012).

    Article  CAS  Google Scholar 

  29. K. Matyjaszewski: Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45, 4015 (2012).

    Article  CAS  Google Scholar 

  30. L. Rostro, S.H. Wong, and B. Boudouris: Solid state electrical conductivity of radical polymers as a function of pendant group oxidation state. Macromolecules 47, 3713 (2014).

    Article  CAS  Google Scholar 

  31. D.C. Bobela, B.K. Hughes, W.A. Braunecker, T.W. Kemper, R.E. Larsen, and T. Gennett: Close packing of nitroxide radicals in stable organic radical polymeric materials. J. Phys. Chem. Lett. 6, 1414 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Air Force Office of Scientific Research through the Young Investigator Program (AFOSR YIP, Grant number FA9550-12-1-0243, Program Manager: Dr. Charles Lee). L. R. and J. S. L. appreciatively acknowledge the National Science Foundation forsupport through the Graduate Research Fellowship Program (Grant number DGE-1333468). A. R. M. thanks the National Science Foundation for partial support of his work through the Nanotechnology Undergraduate Education (NUE) in Engineering Program (Award number 1242171, Program Manager: Dr. Mary Poats). Further support of the work of A. R. M. was generously provided by the Intel Corporation and the Semiconductor Research Corporation (SRC) Education Alliance. We thank Gamini Mendis for assistance with the differential scanning calorimetry experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan W. Boudouris.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.27

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostro, L., Baradwaj, A.G., Muller, A.R. et al. Synthesis and thin-film self-assembly of radical-containing diblock copolymers. MRS Communications 5, 257–263 (2015). https://doi.org/10.1557/mrc.2015.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.27

Navigation