Skip to main content
Log in

Significant room-temperature plasticity in a high Zr-containing bulk glassy alloy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, the glass forming ability, thermal stability, and room-temperature mechanical behavior of a high Zr-containing Zr71Cu11Ni10.5Al7Ti0.5 bulk glassy alloy were investigated. The glassy alloy exhibits a high glass-forming ability with a critical casting diameter of 5 mm using copper mold injection casting, and its critical cooling rate is estimated to be smaller than 40 K/s. A small kinetic fragility index m of 32 indicates its good thermodynamic stability and glass-forming ability. Compressive tests indicate that the glassy alloy displays a significant average plastic strain of 12.3%, a high fracture strength of 1592 MPa, and Young’s modulus of 74.5 GPa. The good ductility is attributed to the introduction of more free volume and local compositional inhomogeneity with increasing Zr addition. This finding may provide useful guidelines for the development of novel high Zr-containing glassy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull.24, 42–56 (1999).

    Article  CAS  Google Scholar 

  2. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater.48, 279–306 (2000).

    Article  CAS  Google Scholar 

  3. C. Schuh, T. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater.55, 4067–4109 (2007).

    Article  CAS  Google Scholar 

  4. A. Peker and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett.63, 2342–2344 (1993).

    Article  Google Scholar 

  5. A. Inoue and T. Zhang: Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater. Trans., JIM37, 185–187 (1996).

    Article  CAS  Google Scholar 

  6. D. Wang, H. Tan, and Y. Li: Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater.53, 2969–2979 (2005).

    Article  CAS  Google Scholar 

  7. Q.K. Jiang, X.D. Wang, X.P. Nie, G.Q. Zhang, H. Ma, H-J. Fecht, J. Bendnarcik, H. Franz, Y.G. Liu, Q.P. Cao, and J.Z. Jiang: Zr–(Cu, Ag)–Al bulk metallic glasses. Acta Mater.56, 1785–1796 (2008).

    Article  CAS  Google Scholar 

  8. T. Zhang and A. Inoue: Formation, thermal, and mechanical properties of bulk glassy alloys in Zr–Al–Co–Cu systems. Mater. Sci. Eng., A375–377, 432–435 (2004).

    Article  Google Scholar 

  9. http://www.liquidmetal.com.

  10. M.B. Guglielmotti, S. Renou, and R.L. Cabrini: A histomorphometric study of tissue interface by laminar implant test in rats. Int. J. Oral Maxillofac. Implants14, 565–570 (1999).

    CAS  Google Scholar 

  11. J.K.L. Lee, K. Maruthainar, N. Wardle, F. Haddad, and G.W. Blunn: Increased force simulator wear testing of a zirconium oxide total knee arthroplasty. Knee16, 269–274 (2009).

    Article  Google Scholar 

  12. M.L. Morrison, R.A. Buchanan, R.V. Leon, C.T. Liu, B.A. Green, P.K. Liaw, and J.A. Horton: The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte. J. Biomed. Mater. Res.74A, 430–438 (2005).

    Article  CAS  Google Scholar 

  13. J.Y. Park, S.J. Yoo, B.K. Choi, and Y.H. Jeong: Corrosion and oxide characteristics of Zr–1.5Nb–04Sn–0.2Fe–0.1Cr alloys in 360 °C pure water and LiOH solution. J. Nucl. Mater.373, 343–350 (2008).

    Article  CAS  Google Scholar 

  14. L. Zhang, Y.Q. Cheng, A.J. Cao, J. Xu, and E. Ma: Bulk metallic glasses with large plasticity: Composition design from the structural perspective. Acta Mater.57, 1154–1164 (2009).

    Article  CAS  Google Scholar 

  15. X.H. Lin and W.L. Johnson: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys.78, 6514–6519 (1995).

    Article  CAS  Google Scholar 

  16. H. Jones:Rapid Solidification of Metals and Alloys (The Institution of Metallurgist, Chameleon Press, London, 1982).

  17. H.E. Kissinger: Reaction kinetics in differential thermal analysis. Anal. Chem.29, 1702–1706 (1957).

    Article  CAS  Google Scholar 

  18. H.R. Wang, Y.L. Gao, G.H. Min, X.D. Hui, and Y.F. Ye: Primary crystallization in rapidly solidified Zr70Cu20Ni10 alloy from a supercooled liquid region. Phys. Lett. A314, 81–87 (2003).

    Article  CAS  Google Scholar 

  19. Y.H. Li, W. Zhang, C. Dong, J.B. Qiang, and A. Makino: Correlation between the glass-forming ability and activation energy of crystallization for Zr75−xNi25Alx. Int. J. Miner., Metall. Mater.20, 445–449 (2013).

    Article  CAS  Google Scholar 

  20. R. Fernández, W. Carrasco, and A. Zúñiga: Structure and crystallization of amorphous Cu–Zr–Al powders. J. Non-Cryst. Solids356, 1665–1669 (2010).

    Article  Google Scholar 

  21. R. Bohmer and C.A. Angell: Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge–As–Se supercooled liquids. Phys. Rev. B45, 10091–10094 (1992).

    Article  CAS  Google Scholar 

  22. R. Bruning and K. Samwer: Glass transition on long time scales. Phys. Rev. B46, 11318–11322 (1992).

    Article  CAS  Google Scholar 

  23. R. Bohmer, K.L. Ngai, C.A. Angell, and D.J. Plazek: Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys.99, 4201–4209 (1993).

    Article  Google Scholar 

  24. M. Zhu, J.J. Li, L.J. Yao, Z.Y. Jian, F.E. Chang, and G.C. Yang: Non-isothermal crystallization kinetics and fragility of (Cu46Zr47Al7)97Ti3 bulk metallic glass investigated by differential scanning calorimetry. Thermochim. Acta565, 132–136 (2013).

    Article  CAS  Google Scholar 

  25. E.S. Park, J.H. Na, and D.H. Kim: Correlation between fragility and glass-forming ability/plasticity in metallic glass-forming alloys. Appl. Phys. Lett.91, 031907–031909 (2007).

    Article  Google Scholar 

  26. G. Wang, K.C. Chan, L. Xia, P. Yu, J. Shen, and W.H. Wang: Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater.57, 6146–6155 (2009).

    Article  CAS  Google Scholar 

  27. B.A. Sun, J. Tan, S. Pauly, U. Kühn, and J. Eckert: Stable fracture of a malleable Zr-based bulk metallic glass. J. Appl. Phys.112, 103533–103538 (2012).

    Article  Google Scholar 

  28. J. Pan, K.C. Chan, Q. Chen, N. Li, S.F. Guo, and L. Liu: The effect of microalloying on mechanical properties in CuZrAl bulk metallic glass. J. Alloys Compd.504S, S74–S77 (2010).

    Article  Google Scholar 

  29. G. He, J. Eckert, W. Löser, and L. Schultz: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater.2, 33–37 (2003).

    Article  CAS  Google Scholar 

  30. S.H. White, S.E. Burrows, J. Carreras, N.D. Shaw, and F.J. Humphreys: On mylonites in ductile shear zones. J. Struct. Geol. 2, 175–188 (1980).

  31. M. Kusy, U. Ktthn, A. Concustell, A. Gebert, J. Das, J. Eckert, L. Schultz, and M.D. Baro: Fracture surface morphology of compressed bulk metallic glass-matrix-composites and bulk metallic glass. Intermetallics14, 982–986 (2006).

    Article  CAS  Google Scholar 

  32. M.W. Chen, A. Inoue, W. Zhang, and T. Sakurai: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett.96, 245502–245505 (2006).

    Article  Google Scholar 

  33. J.C. Oh, T. Ohkubo, Y.C. Kim, E. Fleury, and K. Hono: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater.53, 165–169 (2005).

    Article  CAS  Google Scholar 

  34. J. Schroers and W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett.93, 255506–255509 (2004).

    Article  Google Scholar 

  35. L.Y. Chen, A.D. Setyawan, H. Kato, A. Inoue, G.Q. Zhang, J. Saida, X.D. Wang, Q.P. Cao, and J.Z. Jiang: Free volume-induced enhancement of plasticity in a monolithic bulk metallic glass at room temperature. Scripta Mater.59, 75–78 (2008).

    Article  Google Scholar 

  36. F. Szuecs, C.P. Kim, and W.L. Johnson: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater.49, 1507–1513 (2001).

    Article  CAS  Google Scholar 

  37. L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B64, 180201–180204 (2001).

    Article  Google Scholar 

  38. T. Yano, Y. Yorikado, Y. Akeno, F. Hori, Y. Yokoyama, A. Iwase, A. Inoue, and T.J. Konno: Relaxation and crystallization behavior of the Zr50Cu40Al10 metallic glass. Mater. Trans.46, 2886–2892 (2005).

    Article  CAS  Google Scholar 

  39. K. Mondal, T. Ohkubo, T. Toyama, Y. Nagai, M. Hasegawa, and K. Hono: The effect of nanocrystallization and free volume on the room temperature plasticity of Zr-based bulk metallic glasses. Acta Mater.56, 5329–5339 (2008).

    Article  CAS  Google Scholar 

  40. A. Takeuchi and A. Inoue: Classification of bulk metallic glasses by atomic size difference, heat of mixing, and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans.46, 2817–2829 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J.X. Tu, Q. Hu, G.Q. Peng, J.Z. Zou, and Y.H. Yan for technical assistance, and also thank X.R. Zeng, H.Y. Zhang, X.B. Xiong, and X.H. Li for enlightening discussions. S.S.C. would like to acknowledge the financial support by the fund of State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP201919), State Key Laboratory of Advanced Metals and Materials in USTB (Grant No. 2019-Z01), Startup Doctoral Foundation of Anhui University of Technology (Grant No. DT17100092), Youth Foundation of Anhui University of Technology (Grant No. QZ201805), Natural Science Foundation of Anhui Province (Grant No. 1908085ME147), and Science and Technology R&D Program of Shenzhen (Grant No. JCYJ20160520175916066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangshuang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Song, P., Xing, D. et al. Significant room-temperature plasticity in a high Zr-containing bulk glassy alloy. Journal of Materials Research 35, 1590–1597 (2020). https://doi.org/10.1557/jmr.2020.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.94

Navigation