Skip to main content
Log in

Influence of dealloying solution on the microstructure of nanoporous copper through chemical dealloying of Al75Cu25 ribbons

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this article, Al75Cu25 (at.%) ribbons were dealloyed by HCl, H2C2O4, H3PO4, and NaOH solutions, respectively, to prepare nanoporous copper (NPC). The dealloying behavior is varied with dealloying solutions, allowing modulating the microstructure and porosity of the NPC. Al75Cu25 ribbons are fully dealloyed in HCl, H2C2O4, and NaOH solutions, whereas they are partially dealloyed in H3PO4 solution. Except the NPC prepared in the NaOH solution, no obvious cracks are traced in other samples. The surface diffusivity (Ds) of Cu atoms along the alloy/solution interfaces is varied with solutions, producing the NPC with different microstructure. NPC with higher specific surface area can be obtained by dealloying the Al75Cu25 ribbons in the HCl solution. Compared with the dealloying in H2C2O4, H3PO4, and NaOH solutions, the dealloying in 10 wt% HCl solution for 25 min at 90 ± 1 °C facilitates the best NPC in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
TABLE I

Similar content being viewed by others

References

  1. S.H. Overbury, L. Ortiz-Soto, H.G. Zhu, B. Lee, M.D. Amiridis, and D. Sheng: Comparison of Au catalysts supported on mesoporous titania and silica: Investigation of Au particle size effects and metal-support interactions. Catal. Lett. 95, 99 (2004).

    CAS  Google Scholar 

  2. J.J. Gao, G.P. Zhou, H.J. Qiu, Y. Wang, and J.Q. Wang: Dealloying monolithic Pt–Cu alloy to wire-like nanoporous structure for electrocatalysis and electrochemical sensing. Corros. Sci. 108, 194 (2016).

    CAS  Google Scholar 

  3. W.C. Zhang, X.L. Wu, C.X. Kan, F.M. Pan, H.T. Chen, J. Zhu, and P.K. Chu: Surface-enhanced Raman scattering from silver nanostructures with different morphologies. Appl. Phys. A 100, 83 (2010).

    CAS  Google Scholar 

  4. R. Li, X.J. Liu, H. Wang, Y. Wu, X.M. Chu, and Z.P. Lu: Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering. Corros. Sci. 84, 159 (2014).

    CAS  Google Scholar 

  5. S.C. Zhang, Y.L. Xing, T. Jiang, Z.J. Du, F. Li, L. He, and W.B. Liu: A three-dimensional tin-coated nanoporous copper for lithium-ion battery anodes. J. Power Sources 196, 6915 (2011).

    CAS  Google Scholar 

  6. T.A. Rebbecchi and Y. Chen: Template-based fabrication of nanoporous metals. J. Mater. Res. 33, 2 (2017).

    Google Scholar 

  7. H. Luo, L. Sun, Y. Lu, and Y. Yan: Electrodeposition of mesoporous semimetal and magnetic metal films from lyotropic liquid crystalline phases. Langmuir 20, 10218 (2004).

    CAS  Google Scholar 

  8. J. Peng, J. Cizeron, J.F. Bertone, and V.L. Colvin: Preparation of macroporous metal films from colloidal crystals. J. Am. Chem. Soc. 121, 226 (1999).

    Google Scholar 

  9. U.S. Min and J.C.M. Li: The microstructure and dealloying kinetics of a Cu–Mn alloy. J. Mater. Res. 9, 2878 (1994).

    CAS  Google Scholar 

  10. F.M. Zhang, P. Li, J. Yu, L.L. Wang, F. Saba, G. Dai, and S.Y. He: Fabrication, formation mechanism and properties of three-dimensional nanoporous titanium dealloyed in metallic powders. J. Mater. Res. 32, 1528 (2017).

    CAS  Google Scholar 

  11. J. Erlebacher, A. Karma, N. Dimitrov, and K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).

    CAS  Google Scholar 

  12. D.V. Pugh, A. Dursun, and S.G. Corcoran: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25. J. Mater. Res. 18, 216 (2003).

    CAS  Google Scholar 

  13. A.M. Hodge, J. Biener, L.L. Hsiung, Y.M. Wang, A.V. Hamza, and J.H. Satcher: Monolithic nanocrystalline Au fabricated by the compaction of nanoscale foam. J. Mater. Res. 20, 554 (2005).

    CAS  Google Scholar 

  14. W. Chen, Y.C. Karen, S. Wang, I. McNulty, and D.C. Dunand: Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation. Acta Mater. 61, 5561 (2013).

    Google Scholar 

  15. Q.Q. Kong, F. Wei, C.H. Sun, L. Ying, and L.X. Lian: Controllable fabrication of bulk hierarchical nanoporous palladium by chemical dealloying at various temperature and its thermal coarsening. J. Porous Mater. 25, 555 (2018).

    CAS  Google Scholar 

  16. T.T. Song, Y.L. Gao, Z.H. Zhang, and Q.J. Zhai: Dealloying behavior of rapidly solidified Al–Ag alloys to prepare nanoporous Ag in inorganic and organic acidic media. CrystEngComm 13, 7058 (2011).

    CAS  Google Scholar 

  17. C. Zhang, J.Z. Sun, J.L. Xu, X.G. Wang, H. Ji, C.C. Zhao, and Z.H. Zhang: Formation and microstructure of nanoporous silver by dealloying rapidly solidified Zn–Ag alloys. Electrochim. Acta 63, 302 (2012).

    CAS  Google Scholar 

  18. N.T. Tuan, J. Park, J. Lee, J. Gwak, and D. Lee: Synthesis of nanoporous Cu films by dealloying of electrochemically deposited Cu–Zn alloy films. Corros. Sci. 80, 7 (2014).

    CAS  Google Scholar 

  19. Y. Tang, Y. Liu, L.X. Lian, X.Z. Zhou, and L. He: Formation of nanoporous copper through dealloying of dual-phase Cu–Mn–Al alloy: The evolution of microstructure and composition. J. Mater. Res. 27, 2771 (2012).

    CAS  Google Scholar 

  20. M. Okayasu, R. Sato, and S. Takasu: Effects of anisotropic microstructure of continuous cast Al–Cu eutectic alloys on their fatigue and tensile properties. Int. J. Fatigue 42, 45 (2012).

    CAS  Google Scholar 

  21. B.G. Zhao, S. Jia, Y.L. Yuan, T.T. Song, H.L. Ma, Q.J. Zhai, and Y.L. Gao: Paving the way to Fe3O4 nano- and microoctahedra by dealloying Al–Fe binary alloys. Mater. Charact. 156, 109869 (2019).

    CAS  Google Scholar 

  22. X.G. Wang, Z. Qi, C.C. Zhao, W.M. Wang, and Z.H. Zhang: Influence of alloy composition and dealloying solution on the formation and microstructure of monolithic nanoporous silver through chemical dealloying of Al–Ag alloys. J. Phys. Chem. C 113, 13139 (2009).

    CAS  Google Scholar 

  23. W.B. Liu, L. Chen, J.Z. Yan, N. Li, S.Q. Shi, and S.C. Zhang: Dealloying solution dependence of fabrication, microstructure and porosity of hierarchical structured nanoporous copper ribbons. Corros. Sci. 94, 114 (2015).

    CAS  Google Scholar 

  24. W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, S.S. An, and G.X. Li: Influence of dealloying solution on the microstructure of monolithic nanoporous copper through chemical dealloying of Al–30 at.% Cu alloy. Int. J. Electrochem. Sci. 7, 7993 (2012).

    CAS  Google Scholar 

  25. Z.H. Zhang, Y. Wang, Z. Qi, W.H. Zhang, J.Y. Qin, and J. Frenzel: Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J. Phys. Chem. C 113, 12629 (2009).

    CAS  Google Scholar 

  26. Z. Qi, C.C. Zhao, X.G. Wang, J.K. Lin, W. Shao, Z.H. Zhang, and X.F. Bian: Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al–Cu alloys. J. Phys. Chem. C 113, 6694 (2009).

    CAS  Google Scholar 

  27. Z.B. Wang, Y. Wang, H. Gao, J.Z. Niu, J. Zhang, Z.Q. Peng, and Z.H. Zhang: ‘Painting’ nanostructured metals-playing with liquid metal. Nanoscale Horiz. 3, 408 (2018).

    CAS  Google Scholar 

  28. Y.L. Xing, S.B. Wang, B.Z. Fang, S.C. Zhang, and W.B. Liu: Structure evolution of nanoporous copper by dealloying of Al 17–33 at.% Cu alloy. Int. J. Electrochem. Sci. 10, 4849 (2015).

    CAS  Google Scholar 

  29. F. Chen, X. Chen, L.J. Zou, Y. Yao, Y.J. Lin, Q. Shen, E.J. Lavernia, and L.M. Zhang: Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys. Mater. Sci. Eng., A 660, 241 (2016).

    CAS  Google Scholar 

  30. W. Kurz and R. Trivedi: Rapid solidification processing and microstructure formation. Mater. Sci. Eng., A 179–180, 46 (1994).

    Google Scholar 

  31. S. Ye and T.J. Balk: Evolution of structure, composition, and stress in nanoporous gold thin films with grain-boundary cracks. Metall. Mater. Trans. A 39, 2656 (2008).

    Google Scholar 

  32. N.A. Senior and R.C. Newman: Synthesis of tough nanoporous metals by controlled electrolytic dealloying. Nanotechnology 17, 2311 (2006).

    CAS  Google Scholar 

  33. S.S. An, S.C. Zhang, W.B. Liu, H. Fang, M.L. Zhang, and Y. Yu: Dealloying behavior of Mn–30Cu alloy in acetic acid solution. Corros. Sci. 75, 256 (2013).

    CAS  Google Scholar 

  34. M. Hakamada and M. Mabuchi: Nanoporous gold prism microassembly through a self-organizing route. Nano Lett. 6, 882 (2006).

    CAS  Google Scholar 

  35. M. Hakamada and M. Mabuchi: Microstructural evolution in nanoporous gold by thermal and acid treatments. Mater. Lett. 62, 483 (2008).

    CAS  Google Scholar 

  36. R.C. Newman and K. Sieradzki: Metallic corrosion. Science 263, 1708 (1994).

    CAS  Google Scholar 

  37. Q. Zhang, X.G. Wang, Z. Qi, Y. Wang, and Z.H. Zhang: A benign route to fabricate nanoporous gold through electrochemical dealloying of Al–Au alloys in a neutral solution. Electrochim. Acta 54, 6190 (2009).

    CAS  Google Scholar 

  38. W.C. Moshier, G.D. Davis, and J.S. Ahearn: The corrosion and passivity of aluminum exposed to dilute sodium sulfate solutions. Corros. Sci. 27, 785 (1987).

    CAS  Google Scholar 

  39. Y. Ding, Y.J. Kim, and J. Erlebacher: Nanoporous gold leaf: “ancient technology”/advanced material. Adv. Mater. 16, 1897 (2010).

    Google Scholar 

  40. X.Q. Li, B.S. Huang, C.C. Qiu, Z. Li, L.H. Shao, and H. Liu: Hierarchical nested-network porous copper fabricated by one-step dealloying for glucose sensing. J. Alloys Compd. 681, 109 (2016).

    CAS  Google Scholar 

  41. W.B. Liu, L. Chen, J.Z. Yan, N. Li, S.Q. Shi, and S.C. Zhang: Nanoporous copper from dual-phase alloy families and its technology application in lithium ion batteries. Corros. Rev. 33, 203 (2015).

    Google Scholar 

  42. F.Y. Diao, X.X. Xiao, B. Luo, H. Sun, F. Ding, L.J. Ci, and P.C. Si: Two-step fabrication of nanoporous copper films with tunable morphology for SERS application. Appl. Surf. Sci. 427, 1271 (2018).

    CAS  Google Scholar 

  43. K. Sieradzki, R.R. Corderman, K. Shukla, and R.C. Newman: Computer simulations of corrosion: Selective dissolution of binary alloys. Philos. Mag. A 59, 713 (1989).

    CAS  Google Scholar 

  44. L.H. Qian and M.W. Chen: Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 91, 597 (2007).

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and the National Natural Science Foundation of China (Grant Nos. 51671123, 51171105, and 50971086). B.G. Zhao acknowledges the support by the National Natural Science Foundation of China (Grant No. 51901125) and the Postdoctoral Science Foundation (Grant No. 2018M640376), P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingge Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Zhao, B., Ding, K. et al. Influence of dealloying solution on the microstructure of nanoporous copper through chemical dealloying of Al75Cu25 ribbons. Journal of Materials Research 35, 2610–2619 (2020). https://doi.org/10.1557/jmr.2020.69

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.69

Navigation