Skip to main content
Log in

Nitrite sensor based on room temperature ionic liquid functionalized α-zirconium phosphate modified glassy carbon electrode

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel ionic liquid/α-ZrP (C16MIM/α-ZrP) lamellar nanocomposite was fabricated via the electrostatic self-assembly deposition technique by using exfoliated α-ZrP nanosheets and guest molecules (1-hexadecyl-3-methylimidazolium bromide) as building blocks under mild conditions. C16MIM/α-ZrP nanocomposite was characterized by various analytical techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy, and synchronous thermal analyzer. The net interlayer spacing of α-ZrP determined by XRD confirmed that the C16MIM cations formed a monolayer arrangement between the α-ZrP nanosheets. The morphology and microstructure of C16MIM/α-ZrP composite were observed using SEM and TEM. The C16MIM/α-ZrP modified glass carbon electrode exhibited excellent electrocatalytic activity toward the oxidation of nitrite in weak base media. The results obtained with differential pulse voltammetry demonstrated that the C16MIM/α-ZrP hybrid detected nitrite linearly in the concentration range from 7.3 μM to 1.25 mM with the detection limit of 1.26 μM (S/N = 3). Additionally, the prepared sensor showed outstanding reproducibility, high stability, and anti-interference capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
TABLE 1

Similar content being viewed by others

References

  1. C. Jo, H.J. Ahn, J.H. Son, J.W. Lee, and M.W. Byun: Packaging and irradiation effect on lipid oxidation, color, residual nitrite content, and nitrosamine formation in cooked pork sausage. Food Contr. 14, 7 (2003).

    Article  CAS  Google Scholar 

  2. R. Cao, H. Huang, J. Liang, T. Wang, Y. Luo, A.M. Asiri, H. Ye, and X. Sun: A MoN nanosheet array supported on carbon cloth as an efficient electrochemical sensor for nitrite detection. Analyst 144, 5378 (2019).

    Article  CAS  Google Scholar 

  3. M.J. Moorcroft, J. Davis, and R.G. Compton: Detection and determination of nitrate and nitrite: A review. Talanta 54, 785 (2001).

    Article  CAS  Google Scholar 

  4. S.S. Mirvish: Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 93, 17 (1995).

    Article  CAS  Google Scholar 

  5. R. Wang, Z. Wang, X. Xiang, R. Zhang, X. Shi, and X. Sun: MnO2 nanoarrays: An efficient catalyst electrode for nitrite electroreduction toward sensing and NH3 synthesis applications. Chem. Commun. 54, 10340 (2018).

    Article  CAS  Google Scholar 

  6. N. Pourreza, M.R. Fat'hi, and A. Hatami: Indirect cloud point extraction and spectrophotometric determination of nitrite in water and meat products. Microchem. J. 104, 22 (2012).

    Article  CAS  Google Scholar 

  7. A. Idrissi, C. Ruckebusch, B. Debus, L. Boussekey, and P. Damay: Probing local structure of sub and supercritical CO2 by using two-dimensional Raman correlation spectroscopy. J. Mol. Liq. 164, 11 (2011).

    Article  CAS  Google Scholar 

  8. Z. Lin, W. Xue, H. Chen, and J.M. Lin: Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal. Chem. 83, 8245 (2011).

    Article  CAS  Google Scholar 

  9. W.S. Jobgen, S.C. Jobgen, H. Li, C.J. Meininger, and G. Wu: Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J. Chromatogr. B 851, 71 (2007).

    Article  CAS  Google Scholar 

  10. V.K. Gupta, A.K. Singh, and L.K. Kumawat: Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sens. Actuat., B 195, 98 (2014).

    Article  CAS  Google Scholar 

  11. K.M. Miranda, M.G. Espey, and D.A. Wink: A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5, 62 (2001).

    Article  CAS  Google Scholar 

  12. U.P. Azad, S. Turllapati, P.K. Rastogi, and V. Ganesan: Tris(1,10-phenanthroline)iron(II)-bentonite film as efficient electrochemical sensing platform for nitrite determination. Electrochim. Acta 127, 193 (2014).

    Article  CAS  Google Scholar 

  13. B. Yuan, C. Xu, L. Liu, Y. Shi, S. Li, R. Zhang, and D. Zhang: Polyethylenimine-bridged graphene oxide–gold film on glassy carbon electrode and its electrocatalytic activity toward nitrite and hydrogen peroxide. Sens. Actuat., B 198, 55 (2014).

    Article  CAS  Google Scholar 

  14. A. Afkhami, F. Soltani-Felehgari, T. Madrakian, and H. Ghaedi: Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens. Bioelectron 51, 379 (2014).

    Article  CAS  Google Scholar 

  15. C. Tan, X. Cao, X. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, and G. Nam: Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225 (2017).

    Article  CAS  Google Scholar 

  16. S. Lu, M. Hummel, S. Kang, and Z. Gu: Selective voltammetric determination of nitrite using cobalt phthalocyanine modified on multiwalled carbon nanotubes. J. Electrochem. Soc. 167, 046515 (2020).

    Article  CAS  Google Scholar 

  17. S. Lu, M. Hummel, K. Chen, Y. Zhou, S. Kang, and Z. Gu: Synthesis of Au@ZIF-8 nanocomposites for enhanced electrochemical detection of dopamine. Electrochem. Commun. 114, 106715 (2020).

    Article  CAS  Google Scholar 

  18. V.K. Gupta, H. Karimi-Maleh, and R. Sadegh: Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci. 10, 303 (2015).

    Google Scholar 

  19. T.L. Greaves and C.J. Drummond: Protic ionic liquids: Properties and applications. Chem. Rev. 108, 206 (2008).

    Article  CAS  Google Scholar 

  20. Q. Zhang, S. Zhang, and Y. Deng: Recent advances in ionic liquid catalysis. Green Chem. 13, 2619 (2011).

    Article  CAS  Google Scholar 

  21. M. Smiglak, A. Metlen, and R.D. Rogers: The second evolution of ionic liquids: From solvents and separations to advanced materials—energetic examples from the ionic liquid cookbook. Acc. Chem. Res. 40, 1182 (2007).

    Article  CAS  Google Scholar 

  22. V.J. Cadarso, J. Perera-Nuñez, A. Mendez-Vilas, L. Labajos-Broncano, M.-L. González-Martín, and J. Brugger: Microdrop generation and deposition of ionic liquids. J. Mater. Res. 29, 2100 (2014).

    Article  CAS  Google Scholar 

  23. K. Põhako-Esko, M. Timusk, K. Saal, R. Lõhmus, I. Kink, and U. Mäeorg: Increased conductivity of polymerized ionic liquids through the use of a nonpolymerizable ionic liquid additive. J. Mater. Res. 28, 3086 (2013).

    Article  CAS  Google Scholar 

  24. M. Galiński, A. Lewandowski, and I. Stępniak: Ionic liquids as electrolytes. Electrochim. Acta 51, 5567 (2006).

    Article  CAS  Google Scholar 

  25. H. Xu, H.-Y. Xiong, Q.-X. Zeng, L. Jia, Y. Wang, and S.-F. Wang: Direct electrochemistry and electrocatalysis of heme proteins immobilized in single-wall carbon nanotubes-surfactant films in room temperature ionic liquids. Electrochem. Commun. 11, 286 (2009).

    Article  CAS  Google Scholar 

  26. D. Wei and A. Ivaska: Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta 607, 126 (2008).

    Article  CAS  Google Scholar 

  27. Z. Zhang, D. Wang, M. Yang, L. Liu, J. Ma, M. Wang, C. Zhang, D. Zhang, and Z. Tong: Electrostatic self-assembly deposition of layered calcium niobate intercalated with task-specific ionic liquid and its electrocatalytic activity. Chem. Lett. 46, 506 (2017).

    Article  CAS  Google Scholar 

  28. A. Clearfield: Inorganic ion exchangers with layered structures. Annu. Rev. Mater. Sci. 14, 205 (1984).

    Article  CAS  Google Scholar 

  29. G. Alberti: Syntheses, crystalline structure, and ion-exchange properties of insoluble acid salts of tetravalent metals and their salt forms. Acc. Chem. Res. 11, 163 (1978).

    Article  CAS  Google Scholar 

  30. L. Sun, W.J. Boo, R.L. Browning, H.-J. Sue, and A. Clearfield: Effect of crystallinity on the intercalation of monoamine in α-zirconium phosphate layer structure. Chem. Mater. 17, 5606 (2005).

    Article  CAS  Google Scholar 

  31. L. Sun, W.J. Boo, H.-J. Sue, and A. Clearfield: Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J. Chem. 31, 39 (2007).

    Article  CAS  Google Scholar 

  32. L. Sun, J.Y. O'Reilly, D. Kong, J.Y. Su, W.J. Boo, H.J. Sue, and A. Clearfield: The effect of guest molecular architecture and host crystallinity upon the mechanism of the intercalation reaction. J. Colloid Interface Sci. 333, 503 (2009).

    Article  CAS  Google Scholar 

  33. S. Lu, M. Hummel, Z. Gu, Y. Gu, Z. Cen, L. Wei, Y. Zhou, C. Zhang, and C. Yang: Trash to treasure: A novel chemical route to synthesis of NiO/C for hydrogen production. Int. J. Hydrogen Energ. 44, 16144 (2019).

    Article  CAS  Google Scholar 

  34. T. Xu, D. Ma, C. Li, Q. Liu, S. Lu, A.M. Asiri, C. Yang, and X. Sun: Ambient electrochemical NH3 synthesis from N2 and water enabled by ZrO2 nanoparticles. Chem. Commun. 56, 3673 (2020).

    Article  CAS  Google Scholar 

  35. B. Wan, R.G. Anthony, G.Z. Peng, and A. Clearfield: Characterization of organically pillared zirconium phosphates. J. Catal. 101, 19 (1986).

    Article  CAS  Google Scholar 

  36. Y. Liu, C. Lu, W. Hou, and J.J. Zhu: Direct electron transfer of hemoglobin in layered alpha-zirconium phosphate with a high thermal stability. Anal. Biochem. 375, 27 (2008).

    Article  CAS  Google Scholar 

  37. B. Pan, J. Ma, X. Zhang, J. Li, L. Liu, D. Zhang, M. Yang, and Z. Tong: A laminar nanocomposite constructed by self-assembly of exfoliated α-ZrP nanosheets and manganese porphyrin for use in the electrocatalytic oxidation of nitrite. J. Mater. Sci. 50, 6469 (2015).

    Article  CAS  Google Scholar 

  38. C.V. Kumar, and A. Chaudhari: Proteins immobilized at the galleries of layered α-zirconium phosphate: Structure and activity studies. J. Am. Chem. Soc. 122, 830 (2000).

    Article  CAS  Google Scholar 

  39. A. Chaudhari, J. Thota, and C.V. Kumar: Binding and cleavage studies of two proteins intercalated at the galleries of α-zirconium phosphate. Micropor. Mesopor. Mat. 75, 281 (2004).

    Article  CAS  Google Scholar 

  40. A. Bhambhani and C.V. Kumar: Enzyme-inorganic nanoporous materials: Stabilization of proteins intercalated in α-zirconium(IV) phosphate by a denaturant. Micropor. Mesopor. Mat. 110, 517 (2008).

    Article  CAS  Google Scholar 

  41. C. Ruan, F. Yang, J. Xu, C. Lei, and J. Deng: Immobilization of methylene blue using α-zirconium phosphate and its application within a reagentless amperometric hydrogen peroxide biosensor. Electroanalysis 9, 1180 (1997).

    Article  CAS  Google Scholar 

  42. J. Ma, M. Yang, Y. Chen, L. Liu, X. Zhang, M. Wang, D. Zhang, and Z. Tong: Sandwich-structured composite from the direct coassembly of layered titanate nanosheets and Mn porphyrin and its electrocatalytic performance for nitrite oxidation. Mater. Lett. 150, 122 (2015).

    Article  CAS  Google Scholar 

  43. J. Ma, Z. Zhang, M. Yang, Y. Wu, X. Feng, L. Liu, X. Zhang, and Z. Tong: Intercalated methylene blue between calcium niobate nanosheets by ESD technique for electrocatalytic oxidation of ascorbic acid. Micropor. Mesopor. Mat. 221, 123 (2016).

    Article  CAS  Google Scholar 

  44. F. Geng, R. Ma, Y. Yamauchi, and T. Sasaki: Tetrabutylphosphonium ions as a new swelling/delamination agent for layered compounds. Chem. Commun. 50, 9977 (2014).

    Article  CAS  Google Scholar 

  45. K. Dal pont, J.F. Gérard, and E. Espuche: Modification of α-ZrP nanofillers by amines of different chain length: Consequences on the morphology and mechanical properties of styrene butadiene rubber based nanocomposites. Eur. Polym. J. 48, 217 (2012).

    Article  CAS  Google Scholar 

  46. B. Pan, J. Ma, X. Zhang, L. Liu, D. Zhang, J. Li, M. Yang, Z. Zhang, and Z. Tong: Sandwich-structured nanocomposite constructed by fabrication of exfoliation α-ZrP nanosheets and cobalt porphyrin utilized for electrocatalytic oxygen reduction. Micropor. Mesopor. Mat. 223, 213 (2016).

    Article  CAS  Google Scholar 

  47. A. Tarafdar, A.B. Panda, N.C. Pradhan, and P. Pramanik: Synthesis of spherical mesostructured zirconium phosphate with acidic properties. Micropor. Mesopor. Mat. 95, 360 (2006).

    Article  CAS  Google Scholar 

  48. J.-M. Jian, L. Fu, J. Ji, L. Lin, X. Guo, and T.-L. Ren: Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sens. Actuat., B 262, 125 (2018).

    Article  CAS  Google Scholar 

  49. E. Laviron: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19 (1979).

    Article  CAS  Google Scholar 

  50. E. Laviron: Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J. Electroanal. Chem. 52, 355 (1974).

    Article  CAS  Google Scholar 

  51. L. Fu, S. Yu, L. Thompson, and A. Yu: Development of a novel nitrite electrochemical sensor by stepwise in situ formation of palladium and reduced graphene oxide nanocomposites. RSC Adv. 5, 40111 (2015).

    Article  CAS  Google Scholar 

  52. N. Nombona, P. Tau, N. Sehlotho, and T. Nyokong: Electrochemical and electrocatalytic properties of α-substituted manganese and titanium phthalocyanines. Electrochim. Acta 53, 3139 (2008).

    Article  CAS  Google Scholar 

  53. M. Ghanei-Motlagh and M.A. Taher: A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosens. Bioelectron. 109, 279 (2018).

    Article  CAS  Google Scholar 

  54. Y. Li, Y. Bai, G. Han, and M. Li: Porous-reduced graphene oxide for fabricating an amperometric acetylcholinesterase biosensor. Sens. Actuat., B 185, 706 (2013).

    Article  CAS  Google Scholar 

  55. T. Lopes, L. Andrade, H.A. Ribeiro, and A. Mendes: Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy. Int. J. Hydrogen Energ. 35, 11601 (2010).

    Article  CAS  Google Scholar 

  56. N. Maleki, A. Safavi, and F. Tajabadi: Investigation of the role of ionic liquids in imparting electrocatalytic behavior to carbon paste electrode. Electroanalysis 19, 2247 (2007).

    Article  CAS  Google Scholar 

  57. Z. Fan, L. Sun, S. Wu, C. Liu, M. Wang, J. Xu, X. Zhang, and Z. Tong: Preparation of manganese porphyrin/niobium tungstate nanocomposites for enhanced electrochemical detection of nitrite. J. Mater. Sci. 54, 10204 (2019).

    Article  CAS  Google Scholar 

  58. M. Wang, Z. Fan, L. Yi, J. Xu, X. Zhang, and Z. Tong: Construction of iron porphyrin/titanoniobate nanosheet sensors for the sensitive detection of nitrite. J. Mater. Sci. 53, 11403 (2018).

    Article  CAS  Google Scholar 

  59. F. Hu, S. Chen, C. Wang, R. Yuan, D. Yuan, and C. Wang: Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal. Chim. Acta 724, 40 (2012).

    Article  CAS  Google Scholar 

  60. M. Wang, C. Liu, X. Zhang, Z. Fan, J. Xu, and Z. Tong: In situ synthesis of CsTi2NbO7@g-C3N4 core–shell heterojunction with excellent electrocatalytic performance for the detection of nitrite. J. Mater. Res. 33, 3936 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the First-class Undergraduate Majors Construction Program of Jiangsu Province, and the Key Discipline Construction Program of Jiangsu Province. We are also grateful to Jiangsu Industry-University-Research Cooperation Project, Lianyungang Haiyan Project (2019-QD-013), Lianyungang Huaguoshan Talent Program, and Innovation Project of College Student and Graduate Student of Jiangsu Province (KYCX19-2267, KYCX20-2948, and KYCX20-2949).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Liu.

Supplementary material

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.225.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Gu, F., Liu, L. et al. Nitrite sensor based on room temperature ionic liquid functionalized α-zirconium phosphate modified glassy carbon electrode. Journal of Materials Research 35, 3058–3066 (2020). https://doi.org/10.1557/jmr.2020.225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.225

Navigation