Skip to main content

Advertisement

Log in

Cytotoxic properties of graphene derivatives depending on origin and type of cell line

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work is focused on determining whether two graphene derivatives: graphene oxide (GO) and reduced graphene oxide (RGO) can be used alone as a component of anticancer therapy. In this paper, we present the synthesis GO and RGO, their physicochemical characterization as well as an evaluation of their cytotoxic properties on cancer (HepG2 and MCF-7) and non-malignant (clone-9 and HMF) cells. We demonstrated that both tested graphene derivatives have a high affinity to cancer cells. We showed that cytotoxic properties of GO and RGO were different depending on the type of solvent in which they were prepared. Additionally, we observed that cytotoxic properties of GO and RGO were different depending on the origin of the cells (liver and breast) and the form of graphene material (GO and RGO). We showed that GO and RGO can be potential, selectively materials which in future can found application in anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Similar content being viewed by others

References

  1. T.Y. Zakharian, A. Seryshev, B. Sitharaman, B.E. Gilbert, V. Knight, and L.J. Wilson: A fullerene−paclitaxel chemotherapeutic: Synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc. 127, 12508 (2005).

    Article  CAS  Google Scholar 

  2. Z. Liu, S. Tabakman, K. Welsher, and H. Dai: Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85 (2009).

    Article  CAS  Google Scholar 

  3. A.M. Pinto, I.C. Gonçalves, and F.D. Magalhães: Graphene-based materials biocompatibility: A review. Colloids Surf. B 111, 188 (2013).

    Article  CAS  Google Scholar 

  4. D. Bitounis, A. Boucetta, B.H. Hong, D.H. Min, and K. Kostarelos: Prospects and challenges of graphene in biomedical applications. Adv. Mater. 25, 2258 (2013).

    Article  CAS  Google Scholar 

  5. Z.M. Markovic, L.M. Harhaji-Trajkovic, B.M. Todorovic-Markovic, D.P. Kepi, K.M. Arsikin, S.P. Jovanovi, A.C. Pantovic, M.D. Dramicanin, and V.S. Trajkovic: In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32, 1121 (2011).

    Article  CAS  Google Scholar 

  6. J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H.S. Casalongue, D. Vinh, and H. Dai: Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825 (2011).

    Article  CAS  Google Scholar 

  7. P. Huang, C. Xu, J. Lin, C. Wang, X. Wang, C. Zhang, X. Zhou, S. Guo, and D. Cui: Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 1, 240 (2011).

    Article  CAS  Google Scholar 

  8. B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu: Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ASC Nano 5, 7000 (2011).

    Article  CAS  Google Scholar 

  9. L. Zhang, Z. Lu, Q. Zhao, J. Huang, H. Shen, and Z. Zhang: Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7, 460 (2011).

    Article  CAS  Google Scholar 

  10. Z. Xu, S. Wang, Y. Li, M. Wang, P. Shi, and X. Huang: Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl. Mater. Interfaces 6, 17268 (2014).

    Article  CAS  Google Scholar 

  11. S. Bengtson, K. Kling, A.M. Madsen, A.W. Noergaard, N.R. Jacobsen, P.A. Clausen, B. Alonso, A. Pesquera, A. Zurutuz, R. Ramos, H. Okuno, J. Dijon, H. Wallin, and U. Vogel: No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro. Environ. Mol. Mutagen. 57, 469 (2016).

    Article  CAS  Google Scholar 

  12. S.A. Loutfy, T.A. Salaheldin, M.A. Ramadan, K.Y. Farroh, Z.F. Abdallah, and T. Youssef: Synthesis, characterization and cytotoxic evaluation of graphene oxide nanosheets: In vitro liver cancer model. Asian Pac. J. Cancer Prev. 18, 955 (2017).

    Google Scholar 

  13. J. Wu, R. Yang, L. Zhang, Z. Fan, and S. Liu: Cytotoxicity effect of graphene oxide on human MDA-MB-231 cells. Toxicol. Mech. Methods 25, 312 (2015).

    Article  CAS  Google Scholar 

  14. T.A. Tabish, M.Z. Pranjol, H. Hayat, A.A.M. Rahat, T.M. Abdullah, J.L. Whatmore, and S. Zhang: In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells. Nanotechnology 15, 504001 (2017).

    Article  Google Scholar 

  15. L. Luo, L. Xu, and H. Zhao: Biosynthesis of reduced graphene oxide and its in-vitro cytotoxicity against cervical cancer (HeLa) cell lines. Mater. Sci. Eng. C 78, 198 (2017).

    Article  CAS  Google Scholar 

  16. T. Zhou, B. Zhang, P. Wei, Y. Du, H. Zhou, M. Yu, L. Yan, W. Zhang, G. Nie, C. Chen, Y. Tu, and T. Wei: Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials 37, 9833 (2014).

    Article  Google Scholar 

  17. C.N. Yeh, K. Raidongia, J. Shao, Q.H. Yang, and J. Huang: On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166 (2015).

    Article  CAS  Google Scholar 

  18. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, and G.G. Wallace: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008).

    Article  CAS  Google Scholar 

  19. S. Gurunathan, J.W. Han, V. Eppakayala, and J.H. Kim: Green synthesis of graphene and its cytotoxic effects in human breast cancer cells. J. Nanomed. 8, 1015 (2013).

    Article  Google Scholar 

  20. N.S. Chaudhari, A.P. Pandey, P.O. Patil, A.R. Tekade, S.B. Bari, and P.K. Deshmukh: Graphene oxide based magnetic nanocomposites for efficient treatment of breast cancer. Mater. Sci. Eng. C 37, 278 (2014).

    Article  CAS  Google Scholar 

  21. N. Chatterjee, H.J. Eom, and J. Choi: A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials 35, 1109 (2014).

    Article  CAS  Google Scholar 

  22. S. Das, S. Singh, V. Singh, D. Joung, J.M. Dowding, D. Reid, J. Anderson, L. Zhai, S.I. Khondaker, W.T. Self, and S. Seal: Oxygenated functional group density on graphene oxide: Its effect on cell toxicity. Part. Part. Syst. Charact. 30, 148 (2013).

    Article  CAS  Google Scholar 

  23. N.V. Vallabani, S. Mittal, R.K. Shukla, A.K. Pandey, S.R. Dhakate, R. Pasricha, and A. Dhawan: Toxicity of graphene in normal human lung cells (BEAS-2B). J. Biomed. Nanotechnol. 7, 106 (2011).

    Article  CAS  Google Scholar 

  24. A. Wang, K. Pu, B. Dong, Y. Liu, L. Zhang, Z. Zhang, W. Duan, and Y. Zhu: Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J Appl. Toxicol. 33, 1156 (2013).

    Article  CAS  Google Scholar 

  25. S. Fulda, A.M. Gorman, O. Hori, and A. Samali: Cellular stress responses: Cell survival and cell death. Int. J. Cell Biol. (2010). doi:10.1155/2010/214074.

    Google Scholar 

  26. V.C. Sanchez, A. Jachak, R.H. Hurt, and A.B. Kane: Biological interactions of graphene-family nanomaterials–An interdisciplinary review. Chem. Res. Toxicol. 25, 15 (2012).

    Article  CAS  Google Scholar 

  27. A. Fletcher: The cell membrane and receptors. Anaesth. Intensive Care Med. 18, 316 (2017).

    Article  Google Scholar 

  28. W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  29. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo: Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46, 1112 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported within a frame of OPUS 11 program No. UMO-2016/21/B/ST5/01774.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Zuchowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuchowska, A., Dabrowski, B., Jastrzebska, E. et al. Cytotoxic properties of graphene derivatives depending on origin and type of cell line. Journal of Materials Research 35, 2385–2395 (2020). https://doi.org/10.1557/jmr.2020.201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.201

Navigation