Skip to main content
Log in

Assessing atomically thin delta-doping of silicon using mid-infrared ellipsometry

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hydrogen lithography has been used to template phosphine-based surface chemistry to fabricate atomic-scale devices, a process we abbreviate as atomic precision advanced manufacturing (APAM). Here, we use mid-infrared variable angle spectroscopic ellipsometry (IR-VASE) to characterize single-nanometer thickness phosphorus dopant layers (δ-layers) in silicon made using APAM compatible processes. A large Drude response is directly attributable to the δ-layer and can be used for nondestructive monitoring of the condition of the APAM layer when integrating additional processing steps. The carrier density and mobility extracted from our room temperature IR-VASE measurements are consistent with cryogenic magneto-transport measurements, showing that APAM δ-layers function at room temperature. Finally, the permittivity extracted from these measurements shows that the doping in the APAM δ-layers is so large that their low-frequency in-plane response is reminiscent of a silicide. However, there is no indication of a plasma resonance, likely due to reduced dimensionality and/or low scattering lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. D.R. Ward, S.W. Schmucker, E.M. Anderson, E. Bussmann, L.A. Tracy, T.-M. Lu, L.N. Maurer, A. Baczewski, D.M. Campbell, M.T. Marshall, and S. Misra: Atomic precision advanced manufacturing for digital electronics. Electron. Device Fail. Anal. Mag. 22, 4–10 (2020).

    Google Scholar 

  2. F.A. Zwanenburg, A.S. Dzurak, A. Morello, M.Y. Simmons, L.C. Hollenberg, G. Klimeck, S. Rogge, S.N. Coppersmith, and M.A. Eriksson: Silicon quantum electronics. Rev. Mod. Phys. 85, 961 (2013).

    Article  CAS  Google Scholar 

  3. A. Sipahigil, R.E. Evans, D.D. Sukachev, M.J. Burek, J. Borregaard, M.K. Bhaskar, C.T. Nguyen, J.L. Pacheco, H.A. Atikian, and C. Meuwly: An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    Article  CAS  Google Scholar 

  4. D.R. Ward, M.T. Marshall, D. Campbell, T.-M. Lu, J.C. Koepke, D.A. Scrymgeour, E. Bussmann, and S. Misra: All-optical lithography process for contacting nanometer precision donor devices. Appl. Phys. Lett. 111, 193101 (2017).

    Article  Google Scholar 

  5. K. Goh, Y. Augarten, L. Oberbeck, and M. Simmons: Enhancing electron transport in Si: P delta-doped devices by rapid thermal anneal. Appl. Phys. Lett. 93, 142105 (2008).

    Article  Google Scholar 

  6. S. Bass: Silicon and germanium doping of epitaxial gallium arsenide grown by the trimethylgallium-arsine method. J. Crystallogr. Growth 47, 613–618 (1979).

    Article  CAS  Google Scholar 

  7. H. Zeindl, T. Wegehaupt, I. Eisele, H. Oppolzer, H. Reisinger, G. Tempel, and F. Koch: Growth and characterization of a delta-function doping layer in Si. Appl. Phys. Lett. 50, 1164–1166 (1987).

    Article  CAS  Google Scholar 

  8. H.-J. Gossmann and E. Schubert: Delta doping in silicon. Crit. Rev. Solid State Mater. Sci. 18, 1–67 (1993).

    Article  Google Scholar 

  9. L. Oberbeck, T.C. Reusch, T. Hallam, S.R. Schofield, N.J. Curson, and M.Y. Simmons: Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy. Appl. Phys. Lett. 104, 253102 (2014).

    Article  Google Scholar 

  10. D. Scrymgeour, A. Baca, K. Fishgrab, R. Simonson, M. Marshall, E. Bussmann, C. Nakakura, M. Anderson, and S. Misra: Determining the resolution of scanning microwave impedance microscopy using atomic-precision buried donor structures. Appl. Surf. Sci. 423, 1097–1102 (2017).

    Article  CAS  Google Scholar 

  11. G. Gramse, A. Kölker, T. Lim, T.J. Stock, H. Solanki, S.R. Schofield, E. Brinciotti, G. Aeppli, F. Kienberger, and N.J. Curson: Nondestructive imaging of atomically thin nanostructures buried in silicon. Sci. Adv. 3, e1602586 (2017).

    Article  Google Scholar 

  12. E. Bussmann, M. Rudolph, G. Subramania, S. Misra, S. Carr, E. Langlois, J. Dominguez, T. Pluym, M. Lilly, and M. Carroll: Scanning capacitance microscopy registration of buried atomic-precision donor devices. Nanotechnology 26, 085701 (2015).

    Article  CAS  Google Scholar 

  13. S.W. Schmucker, P.N. Namboodiri, R. Kashid, X. Wang, B. Hu, J.E. Wyrick, A.F. Myers, J.D. Schumacher, R.M. Silver, and M. Stewart Jr.: Low-resistance, high-yield electrical contacts to atom scale Si: P devices using palladium silicide. Phys. Rev. Appl. 11, 034071 (2019).

    Article  CAS  Google Scholar 

  14. J.A. Miwa, P. Hofmann, M.Y. Simmons, and J.W. Wells: Direct measurement of the band structure of a buried two-dimensional electron gas. Phys. Rev. Lett. 110, 136801 (2013).

    Article  Google Scholar 

  15. P. Boher, M. Bucchia, C. Guillotin, and C. Defranoux: Infrared spectroscopic ellipsometry applied to the characterization of nano-structures of silicon IC manufacturing. Thin Solid Films 450, 173–177 (2004).

    Article  CAS  Google Scholar 

  16. J.A. Woollam and P.G. Snyder: Fundamentals and applications of variable angle spectroscopic ellipsometry. Mater. Sci. Eng. B 5, 279–283 (1990).

    Article  Google Scholar 

  17. J.A. Woollam, B.D. Johs, C.M. Herzinger, J.N. Hilfiker, R.A. Synowicki, and C.L. Bungay: Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications. In Optical Metrology: A Critical Review, Proc. SPIE 10294, 1029402 (1999). doi:10.1117/12.351660.

  18. B. Dorvel, B. Reddy Jr., I. Block, P. Mathias, S.E. Clare, B. Cunningham, D.E. Bergstrom, and R. Bashir: Vapor-phase deposition of monofunctional alkoxysilanes for sub-nanometer-level biointerfacing on silicon oxide surfaces. Adv. Funct. Mater. 20, 87–95 (2010).

    Article  CAS  Google Scholar 

  19. F. Nelson, V. Kamineni, T. Zhang, E. Comfort, J. Lee, and A. Diebold: Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry. Appl. Phys. Lett. 97, 253110 (2010).

    Article  Google Scholar 

  20. T.E. Tiwald, D.W. Thompson, J.A. Woollam, W. Paulson, and R. Hance: Application of IR variable angle spectroscopic ellipsometry to the determination of free carrier concentration depth profiles. Thin Solid Films 313, 661–666 (1998).

    Article  Google Scholar 

  21. C. Pidgeon: Free carrier optical properties. Handb. Semiconduct. 2, 223–328 (1980).

    CAS  Google Scholar 

  22. J.C. Ginn, R.L. Jarecki Jr., E.A. Shaner, and P.S. Davids: Infrared plasmons on heavily-doped silicon. J. Appl. Phys. 110, 043110 (2011).

    Article  Google Scholar 

  23. A. M. Katzenmeyer, S. Dmitrovic, A. D. Baczewski, E. Bussmann, T.-M. Lu, E. Anderson, S. Schmucker, J. A. Ivie, D. M. Campbell, D. R. Ward, G. T. Wang, and S. Misra: Photothermal alternative to device fabrication using atomic precision advanced manufacturing techniques. Proc. SPIE 11324, 113240Z (2020). doi: 10.1117/12.2551455.

    Google Scholar 

  24. J.A. Hagmann, X. Wang, P. Namboodiri, J. Wyrick, R. Murray, M. Stewart Jr., R.M. Silver, and C.A. Richter: High resolution thickness measurements of ultrathin Si: P monolayers using weak localization. Appl. Phys. Lett. 112, 043102 (2018).

    Article  Google Scholar 

  25. C.M. Polley, W.R. Clarke, J.A. Miwa, G. Scappucci, J.W. Wells, D.L. Jaeger, M.R. Bischof, R.F. Reidy, B.P. Gorman, and M. Simmons: Exploring the limits of n-type ultra-shallow junction formation. ACS Nano 7, 5499–5505 (2013).

    Article  CAS  Google Scholar 

  26. G. Matmon, E. Ginossar, B.J. Villis, A. Kölker, T. Lim, H. Solanki, S.R. Schofield, N.J. Curson, J. Li, and B.N. Murdin: Two-to three-dimensional crossover in a dense electron liquid in silicon. Phys. Rev. B 97, 155306 (2018).

    Article  CAS  Google Scholar 

  27. E. Hwang and S.D. Sarma: Electronic transport in two-dimensional Si: P δ-doped layers. Phys. Rev. B 87, 125411 (2013).

    Article  Google Scholar 

  28. J.N. Hilfiker, M. Stadermann, J. Sun, T. Tiwald, J.S. Hale, P.E. Miller, and C. Aracne-Ruddle: Determining thickness and refractive index from free-standing ultra-thin polymer films with spectroscopic ellipsometry. Appl. Surf. Sci. 421, 508–512 (2017).

    Article  CAS  Google Scholar 

  29. J. Cleary, R. Peale, D. Shelton, G. Boreman, C. Smith, M. Ishigami, R. Soref, A. Drehman, and W. Buchwald: IR permittivities for silicides and doped silicon. J. Opt. Soc. Am. B 27, 730–734 (2010).

    Article  CAS  Google Scholar 

  30. M. Shahzad, G. Medhi, R.E. Peale, W.R. Buchwald, J.W. Cleary, R. Soref, G.D. Boreman, and O. Edwards: Infrared surface plasmons on heavily doped silicon. J. Appl. Phys. 110, 123105 (2011).

    Article  Google Scholar 

  31. J. Salman, M. Hafermann, J. Rensberg, C. Wan, R. Wambold, B.S. Gundlach, C. Ronning, and M.A. Kats: Flat optical and plasmonic devices using area-selective ion-beam doping of silicon. Adv. Opt. Mater. 6, 1701027 (2018).

    Article  Google Scholar 

  32. T. Škereň, N. Pascher, A. Garnier, P. Reynaud, E. Rolland, A. Thuaire, D. Widmer, X. Jehl, and A. Fuhrer: CMOS platform for atomic-scale device fabrication. Nanotechnology 29, 435302 (2018).

    Article  Google Scholar 

  33. F. Stern: Polarizability of a two-dimensional electron gas. Phys. Rev. Lett. 18, 546 (1967).

    Article  CAS  Google Scholar 

  34. J.H. Davies: The Physics of Low-dimensional Semiconductors: An Introduction (Cambridge University Press, Cambridge, UK, 1998), pp. 353–356.

    Google Scholar 

  35. O. Hunderi and R. Ryberg: Amorphous gallium-a free electron metal. J. Phys. F: Metal. Phys. 4, 2096 (1974).

    Article  Google Scholar 

Download references

Acknowledgments

A.M.K. thanks P. S. Davids and M. D. Goldflam for helpful discussion regarding IR carrier response of thin films. The Far-reaching Applications, Implications and Realization of Digital Electronics at the Atomic Limit (FAIR DEAL) project is supported by Sandia's Laboratory Directed Research and Development Program and was performed in part at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multimission laboratory managed and operated by the National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Misra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katzenmeyer, A.M., Luk, T.S., Bussmann, E. et al. Assessing atomically thin delta-doping of silicon using mid-infrared ellipsometry. Journal of Materials Research 35, 2098–2105 (2020). https://doi.org/10.1557/jmr.2020.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.155

Navigation