Skip to main content
Log in

Ag-coated nylon fabrics as flexible substrates for surface-enhanced Raman scattering swabbing applications

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A flexible surface-enhanced Raman scattering (SERS) substrate was prepared by vacuum evaporation of silver on the surface of woven nylon fabrics. SERS properties of the Ag-coated nylon fabrics varied as the thickness of silver coatings changed, relative to the morphologies and distribution of silver nanoparticles (NPs) on fiber. The SERS enhancement performance of Ag-coated nylon fabrics was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP). The results suggested that the nylon fabrics coated with 10 nm thickness Ag NPs coatings possessed high SERS activity and its detection concentration for PATP is as low as 10−9 M. Furthermore, sensitive SERS signals with excellent reproducibility (Relative standard deviation = 8.25%) and stability (30 days) have been demonstrated. In addition, the SERS nylon fabrics have been applied to rapidly detect thiram pesticides on cucumber, which indicated a great potential for trace analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 1

Similar content being viewed by others

References

  1. J.F. Li, Y.J. Zhang, S.Y. Ding, R. Panneerselvam, and Z.Q. Tian: Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117, 5002 (2017).

    Article  CAS  Google Scholar 

  2. J. Liu, T. Si, and Z. Zhang: Mussel-inspired immobilization of silver nanoparticles toward sponge for rapid swabbing extraction and SERS detection of trace inorganic explosives. Talanta 204, 189 (2019).

    Article  CAS  Google Scholar 

  3. R. Shi, X. Liu, and Y. Ying: Facing challenges in real-life application of surface-enhanced Raman scattering (SERS): Design and nanofabrication of SERS substrates for rapid field test of food contaminants. J. Agric. Food Chem. 66, 6525 (2017).

    Article  Google Scholar 

  4. T. Xu, X. Wang, Y. Huang, K. Lai, and Y. Fan: Rapid detection of trace methylene blue and malachite green in four fish tissues by ultra-sensitive surface-enhanced Raman spectroscopy coated with gold nanorods. Food Contr. 106, 106720 (2019).

    Article  CAS  Google Scholar 

  5. H. Ko, S. Singamaneni, and V.V. Tsukruk: Nanostructured surfaces and assemblies as SERS media. Small 4, 1576 (2010).

    Article  Google Scholar 

  6. K. Xu, R. Zhou, K. Takei, and M. Hong: Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 6, 1900925 (2019).

    Article  Google Scholar 

  7. E.S. Prikhozhdenko, D.N. Bratashov, D.A. Gorin, and A.M. Yashchenok: Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 11, 1 (2018).

    Article  Google Scholar 

  8. E.P. Hoppmann, W.Y. Wei, and I.M. White: Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 63, 219 (2013).

    Article  CAS  Google Scholar 

  9. M.B. Ross, M.J. Ashley, A.L. Schmucker, S. Singamaneni, R.R. Naik, G.C. Schatz, and C.A. Mirkin: Structure–function relationships for surface-enhanced Raman spectroscopy-active plasmonic paper. J. Phys. Chem. C 120, 20789 (2016).

    Article  CAS  Google Scholar 

  10. C. Wang, B. Liu, and X. Dou: Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sens. Actuators, B 231, 357 (2016).

    Article  CAS  Google Scholar 

  11. R. Zhang, B.B. Xu, X.Q. Liu, Y.L. Zhang, Y. Xu, Q.D. Chen, and H.B. Sun: Highly efficient SERS test strips. Chem. Commun. 48, 5913 (2012).

    Article  CAS  Google Scholar 

  12. C. Chen, Y. Tang, B. Vlahovic, and F. Yan: Electrospun polymer nanofibers decorated with noble metal nanoparticles for chemical sensing. Nanoscale Res. Lett. 12, 451 (2017).

    Article  Google Scholar 

  13. Z. Liu, Z. Yan, J. Lu, S. Ping, L. Mei, B. Lu, and Y. Liu: Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate. Appl. Surf. Sci. 403, 29 (2017).

    Article  CAS  Google Scholar 

  14. D.R. Ballerini, H.N. Ying, G. Garnier, B.P. Ladewig, S. Wei, and P. Jarujamrus: Gold nanoparticle-functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AIChE J. 60, 1598 (2014).

    Article  CAS  Google Scholar 

  15. L. Cai, Z. Deng, J. Dong, S. Song, Y. Wang, and X. Chen: Fabrication of non-woven fabric-based SERS substrate for direct detection of pesticide residues in fruits. J. Test. Eval. 1, 322 (2017).

    Google Scholar 

  16. P.K. Duy, P.T.H. Yen, S. Chun, V.T.T. Ha, and H. Chung: Carbon fiber cloth-supported Au nanodendrites as a rugged surface-enhanced Raman scattering substrate and electrochemical sensing platform. Sens. Actuators, B 225, 377 (2016).

    Article  CAS  Google Scholar 

  17. F. Ge, Y. Chen, A. Liu, S. Guang, and Z. Cai: Flexible and recyclable SERS substrate fabricated by decorated TiO2 film with Ag NPs on the cotton fabric. Cellulose 26, 2689 (2019).

    Article  CAS  Google Scholar 

  18. J. Liu, J. Zhou, B. Tang, T. Zeng, Y. Li, J. Li, Y. Ye, and X. Wang: Surface enhanced Raman scattering (SERS) fabrics for trace analysis. Appl. Surf. Sci. 386, 296 (2016).

    Article  CAS  Google Scholar 

  19. Z. Gong, H. Du, F. Cheng, C. Wang, C. Wang, and M. Fan: Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl. Mater. Interfaces 6, 21931 (2014).

    Article  CAS  Google Scholar 

  20. L.L. Qu, Y.Y. Geng, Z.N. Bao, S. Riaz, and H. Li: Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Microchim. Acta 183, 1307 (2016).

    Article  CAS  Google Scholar 

  21. F.M. Kelly and J.H. Johnston: Colored and functional silver nanoparticle-wool fiber composites. ACS Appl. Mater. Interfaces 3, 1083 (2011).

    Article  CAS  Google Scholar 

  22. B. Tang, L. Sun, J. Kaur, Y. Yu, and X. Wang: In-situ synthesis of gold nanoparticles for multifunctionalization of silk fabrics. Dyes Pigm. 103, 183 (2014).

    Article  CAS  Google Scholar 

  23. A.M. Robinson, Z. Lili, M.Y. Shah Alam, B. Paridhi, S.G. Harroun, D. Dhananjaya, B. Jonathan, and C.L. Brosseau: The development of “fab-chips” as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications. Analyst 140, 779 (2015).

    Article  CAS  Google Scholar 

  24. Y. Chen, F. Ge, S. Guang, and Z. Cai: Self-assembly of Ag nanoparticles on the woven cotton fabrics as mechanical flexible substrates for surface enhanced Raman scattering. J. Alloys Compd. 726, 484 (2017).

    Article  CAS  Google Scholar 

  25. Y. Chen, F. Ge, S. Guang, and Z. Cai: Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis. Appl. Surf. Sci. 436, 111 (2018).

    Article  CAS  Google Scholar 

  26. D. Cheng, M. He, J. Ran, G. Cai, J. Wu, and X. Wang: Depositing a flexible substrate of triangular silver nanoplates onto cotton fabrics for sensitive SERS detection. Sens. Actuators, B 270, 508 (2018).

    Article  CAS  Google Scholar 

  27. X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, and Z.Q. Tian: Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 394, 1729 (2009).

    Article  CAS  Google Scholar 

  28. M. Fan, Z. Zhang, J. Hu, F. Cheng, C. Wang, C. Tang, J. Lin, A.G. Brolo, and H. Zhan: Ag decorated sandpaper as flexible SERS substrate for direct swabbing sampling. Mater. Lett. 133, 57 (2014).

    Article  CAS  Google Scholar 

  29. Z. Li, M. Wang, Y. Jiao, A. Liu, S. Wang, C. Zhang, C. Yang, Y. Xu, C. Li, and B. Man: Different number of silver nanoparticles layers for surface enhanced Raman spectroscopy analysis. Sens. Actuators, B 255, 374 (2018).

    Article  CAS  Google Scholar 

  30. E.C.L. Ru, E.J. Blackie, M. Meyer, and P.G. Etchegoin: Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 111, 13794 (2007).

    Article  Google Scholar 

  31. Z. Wang, M. Li, W. Wang, M. Fang, Q. Sun, and C. Liu: Floating silver film: A flexible surface-enhanced Raman spectroscopy substrate for direct liquid phase detection at gas-liquid interfaces. Nano Res. 9, 1148 (2016).

    Article  CAS  Google Scholar 

  32. H. Sun, H. Liu, and Y. Wu: A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice. Appl. Surf. Sci. 416, 704 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Important Research and Development Plan Project of Hebei Province (19211203D) and Innovation Center of Shijiazhuang for Chemical Fiber Technology (198190167A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengyan Ge or Juan Wang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Zhang, S., Guang, S. et al. Ag-coated nylon fabrics as flexible substrates for surface-enhanced Raman scattering swabbing applications. Journal of Materials Research 35, 1271–1278 (2020). https://doi.org/10.1557/jmr.2020.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.103

Navigation