Skip to main content
Log in

Graphene oxide coated popcorn-like Ag nanoparticles for reliable sensitive surface-enhanced Raman scattering detection of drug residues

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Conventional methods for determination of trace drug residues are either time consuming or labor intensive or require large specialized instruments, which hamper their practical applications in field analysis. Here, we present a rapid and quantitative surface-enhanced Raman scattering (SERS) detection method coupled with a portable Raman spectrometer for determination of trace drug residues on fish surface. Graphene oxide (GO) decorated popcorn-like Ag nanoparticles (NPs) on Cu plate (GO/AgNPs/Cu) were fabricated by a facile approach and directly employed as a robust SERS detection substrate. For practical SERS detections, trace-level residues of crystal violet (10−8 M, 4.1 ng/g) and malachite green (10−8 M, 3.6 ng/g) could be readily detected by simply swabbing the contaminated fish scale surface with the SERS substrate. Importantly, SERS detection was quantitatively realized in the broad linear concentrations. Compared with lab-based Raman spectrometer with large footprints, our method has potential applications in practical rapid, accurate, and on-site SERS determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J. Jia, S. Yan, X.X. Lai, Y.Z. Xu, T. Liu, and Y.H. Xiang: Colorimetric aptasensor for detection of malachite green in fish sample based on RNA and gold nanoparticles. Food Anal. Methods 11, 1668–1676 (2018).

    Google Scholar 

  2. A.A. Bergwerff and P. Scherpenisse: Determination of residues of malachite green in aquatic animals. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 788, 351–359 (2003).

    CAS  Google Scholar 

  3. D. Arroyo, M.C. Ortiz, L.A. Sarabia, and F. Palacios: Advantages of PARAFAC calibration in the determination of malachite green and its metabolite in fish by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1187, 1–10 (2008).

    CAS  Google Scholar 

  4. Y.L. Wang, K.R. Liao, X.J. Huang, and D.X. Yuan: Simultaneous determination of malachite green, crystal violet and their leuco-metabolites in aquaculture water samples using monolithic fiber-based solid-phase microextraction coupled with high performance liquid chromatography. Anal. Methods 7, 8138–8145 (2015).

    CAS  Google Scholar 

  5. A.R. Shalaby, W.H. Emam, and M.M. Anwar: Mini-column assay for rapid detection of malachite green in fish. Food Chem. 226, 8–13 (2017).

    CAS  Google Scholar 

  6. A.A.M. Stolker, T. Zuidema, and M.W.F. Nielen: Residue analysis of veterinary drugs and growth promoting agents. Trends Anal. Chem. 26, 967–979 (2007).

    CAS  Google Scholar 

  7. Y.Y. Zhang, W.S. Yu, L. Pei, K.Q. Lai, B.A. Rasco, and Y.Q. Huang: Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering. Food Chem. 169, 80–84 (2015).

    CAS  Google Scholar 

  8. G. Dowling, P.P.J. Mulder, C. Duffy, L. Regan, and M.R. Smyth: Confirmatory analysis of malachite green, leucomalachite green, crystal violet and leucocrystal violet in salmon by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 586, 411–419 (2007).

    CAS  Google Scholar 

  9. G. Singh, T. Koerner, J.M. Gelinas, M. Abbott, B. Brady, A.C. Huet, C. Charlier, P. Delahaut, and S.B. Godefroy: Design and characterization of a direct ELISA for the detection and quantification of leucomalachite green. Food Addit. Contam., Part A 28, 731–739 (2011).

    CAS  Google Scholar 

  10. Z. Guo, P. Gai, T. Hao, J. Duan, and S. Wang: Determination of malachite green residues in fish using a highly sensitive electrochemiluminescence method combined with molecularly imprinted solid phase extraction. J. Agric. Food Chem. 59, 5257–5262 (2011).

    CAS  Google Scholar 

  11. K. Mitroska, A. Posyniak, J. Zmudzki, and J. Chromatogr: Determination of malachite green and leucomalachite green in carp muscle by liquid chromatography with visible and fluorescence detection. J. Chromatogr. A 1089, 187–192 (2005).

    Google Scholar 

  12. X. Xia, J. Zeng, B. McDearmon, Y. Zheng, Q. Li, and Y. Xia: Silver nanocrystals with concave surfaces and their optical and surface-enhanced Raman scattering properties. Angew. Chem. 50, 12542–12546 (2011).

    CAS  Google Scholar 

  13. K.K. Liu, S. Tadepalli, L.M. Tian, and S. Singamaneni: Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles. Chem. Mater. 27, 5678–5684 (2015).

    Google Scholar 

  14. J.M. Chen, Y.J. Huang, P. Kannan, L. Zhang, Z.Y. Lin, J.W. Zhang, T. Chen, and L.H. Guo: Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal. Chem. 88, 2149–2155 (2016).

    CAS  Google Scholar 

  15. B. Sharma, R.R. Frontiera, A. Henry, E. Ringe, and R.P. Van Duyne: SERS: Materials, applications, and the future. Mater. Today 15, 16–25 (2012).

    CAS  Google Scholar 

  16. X.Y. Zhang, Y.H. Zheng, X. Liu, W. Lu, J.Y. Dai, D.Y. Lei, and D.R. MacFarlane: Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy. Adv. Mater. 27, 1090–1096 (2015).

    CAS  Google Scholar 

  17. C.Y. Li, Y.Q. Huang, K.Q. Lai, B.A. Rasco, and Y.X. Fan: Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control 65, 99–105 (2016).

    CAS  Google Scholar 

  18. X.W. Chen, T.H.D. Nguyen, L.Q. Gu, and M.S. Lin: Use of standing gold nanorods for detection of malachite green and crystal violet in fish by SERS. J. Food Sci. 82, 1640–1646 (2017).

    CAS  Google Scholar 

  19. C. Müller, L. David, V. Chis, and S.C. Pînzaru: Detection of thiabendazole applied on citrus fruits and bananas using surface enhanced Raman scattering. Food Chem. 145, 814–820 (2014).

    Google Scholar 

  20. N.N. Zhou, G.W. Meng, C.H. Zhu, B. Chen, Q.T. Zhou, Y. Ke, and D.X. Huo: A silver-grafted sponge as an effective surface-enhanced Raman scattering substrate. Sens. Actuators, B 258, 56–63 (2018).

    CAS  Google Scholar 

  21. X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. Hou: Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano 5, 952–958 (2011).

    CAS  Google Scholar 

  22. H. Chi, Y.J. Liu, F. Wang, and C. He: Highly sensitive and fast response colorimetric humidity sensors based on graphene oxide film. ACS Appl. Mater. Interfaces 7, 19882–19886 (2015).

    CAS  Google Scholar 

  23. T. Jiang, X. Wang, S. Tang, J. Zhou, C. Gu, and J. Tang: Seed-mediated synthesis and SERS performance of graphene oxide-wrapped Ag nanomushroom. Sci. Rep. 7, 9795–9804 (2017).

    Google Scholar 

  24. Z.Y. Lu, Y.J. Liu, M.H. Wang, C. Zhang, Z. Li, Y.Y. Huo, Z. Li, S.C. Xu, B.Y. Man, and S.Z. Jiang: A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system. Sens. Actuators, B 261, 1–10 (2018).

    CAS  Google Scholar 

  25. X.F. Zhao, J. Yu, C. Zhang, C.S. Chen, S.C. Xu, C.H. Li, Z. Li, S.Z. Zhang, A.H. Liu, and B.Y. Man: Flexible and stretchable SERS substrate based on a pyramidal PMMA structure hybridized with graphene oxide assivated AgNPs. Appl. Surf. Sci. 455, 1171–1178 (2018).

    CAS  Google Scholar 

  26. E. Hutter and J.H. Fendler: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004).

    CAS  Google Scholar 

  27. K.L. Shuford, J. Lee, T.W. Odom, and G.C. Schatz: Optical properties of gold pyramidal shells. J. Phys. Chem. C 112, 6662–6666 (2008).

    CAS  Google Scholar 

  28. M.F. Zhang, J.T. Meng, D.P. Wang, Q. Tang, T. Chen, S.Z. Rong, J.Q. Liu, and Y.C. Wu: Biomimetic synthesis of hierarchical 3D Ag butterfly wing scales arrays/graphene composites as ultrasensitive SERS substrates for efficient trace chemical detection. J. Mater. Chem. C 6, 1933–1943 (2018).

    CAS  Google Scholar 

  29. A.B. Zrimsek, N.L. Wong, and R.P. Van Duyne: Single molecule surface-enhanced Raman spectroscopy: A critical analysis of the bianalyte versus isotopologue proof. J. Phys. Chem. C 120, 5133–5142 (2016).

    CAS  Google Scholar 

  30. O. Bibikova, J. Haas, A.I. López-Lorente, A. Popov, M. Kinnunen, I. Meglinski, and B. Mizaikoff: Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars. Analyst 142, 951–958 (2017).

    CAS  Google Scholar 

  31. D.H. Zhang, X.H. Liu, and X. Wang: Synthesis of single-crystal silver slices with predominant (111) facet and their SERS effect. J. Mol. Struct. 985, 82–85 (2011).

    CAS  Google Scholar 

  32. R. Sanci and M. Volkan: Surface-enhanced Raman scattering (SERS) studies on silver nanorod substrates. Sens. Actuators, B 139, 150–155 (2009).

    CAS  Google Scholar 

  33. Y. Yang, S. Matsubara, L.M. Xiong, T. Hayakawa, and M. Nogami: Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J. Phys. Chem. C 111, 9095–9104 (2007).

    CAS  Google Scholar 

  34. N. Jung, A.C. Crowther, N. Kim, P. Kim, and L. Brus: Raman enhancement on graphene: Adsorbed and intercalated molecular species. ACS Nano 4, 7005–7013 (2010).

    CAS  Google Scholar 

  35. L.L. Qu, Y.Y. Liu, M.K. Liu, G.H. Yang, D.W. Li, and H.T. Li: Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics. ACS Appl. Mater. Interfaces 8, 28180–28186 (2016).

    CAS  Google Scholar 

  36. W.B. Cai, B. Ren, X.Q. Li, C.X. She, F.M. Liu, X.W. Cai, and Z.Q. Tian: Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: Dependence of surface roughening pretreatment. Surf. Sci. 406, 9–22 (1998).

    CAS  Google Scholar 

  37. L. Kang, J. Chu, H. Zhao, P. Xu, and M. Sun: Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. J. Mater. Chem. C 3, 9024–9037 (2015).

    CAS  Google Scholar 

  38. Q. Zhou, X. Li, Q. Fan, X. Zhang, and J. Zheng: Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface-enhanced Raman spectroscopy. Angew. Chem., Int. Ed. 45, 3970–3973 (2006).

    CAS  Google Scholar 

  39. L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu: Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J. Am. Chem. Soc. 131, 9890–9891 (2009).

    CAS  Google Scholar 

  40. L.T. Hu, Y.J. Liu, Y.S. Han, P.X. Chen, C. Zhang, C.H. Li, Z.Y. Lu, D. Luo, and S.Z. Jiang: Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications. J. Mater. Chem. C 5, 3908–3915 (2017).

    CAS  Google Scholar 

  41. M. Kaplan, E.O. Olgun, and O. Karaoglu: A rapid and simple method for simultaneous determination of triphenyl-methane dye residues in rainbow trouts by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1349, 37–43 (2014).

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (No. 61205150), Project of Application Breeding Program of Hefei University of Technology (JZ2016YYPY0060), the Youth Academic Team Capacity Promotion Program (PA2017GDQT0023), and the Startup Foundation of Hefei University of Technology (JZ2015HGBZ0127, XC2015JZBZ17) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maofeng Zhang or Dapeng Wang.

Supplementary Material

43578_2019_34172935_MOESM1_ESM.docx

Supporting Information: Graphene oxide coated popcorn-like Ag nanoparticles for reliable sensitive SERS detection of drug residues (approximately 344 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Chen, Z., Wang, Z. et al. Graphene oxide coated popcorn-like Ag nanoparticles for reliable sensitive surface-enhanced Raman scattering detection of drug residues. Journal of Materials Research 34, 2935–2943 (2019). https://doi.org/10.1557/jmr.2019.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.78

Navigation