Skip to main content
Log in

Electrode-induced lattice distortions in GaAs multi-quantum-dot arrays

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Increasing the number of quantum bits while preserving precise control of their quantum electronic properties is a significant challenge in materials design for the development of semiconductor quantum computing devices. Semiconductor heterostructures can host multiple quantum dots that are electrostatically defined by voltages applied to an array of metallic nanoelectrodes. The structural distortion of multiple-quantum-dot devices due to elastic stress associated with the electrodes has been difficult to predict because of the large micrometer-scale overall sizes of the devices, the complex spatial arrangement of the electrodes, and the sensitive dependence of the magnitude and spatial variation of the stress on processing conditions. Synchrotron X-ray nanobeam Bragg diffraction studies of a GaAs/AlGaAs heterostructure reveal the magnitude and nanoscale variation of these distortions. Investigations of individual linear electrodes reveal lattice tilts consistent with a 28-MPa compressive residual stress in the electrodes. The angular magnitude of the tilts varies by up to 20% over distances of less than 200 nm along the length of the electrodes, consistent with heterogeneity in the metal residual stress. A similar variation of the crystal tilt is observed in multiple-quantum-dot devices, due to a combination of the variation of the stress and the complex electrode arrangement. The heterogeneity in particular can lead to significant challenges in the scaling of multiple-quantum-dot devices due to differences between the charging energies of dots and uncertainty in the potential energy landscape. Alternatively, if incorporated in design, stress presents a new degree of freedom in device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Similar content being viewed by others

References

  1. F.A. Zwanenburg, A.S. Dzurak, A. Morello, M.Y. Simmons, L.C.L. Hollenberg, G. Klimeck, S. Rogge, S.N. Coppersmith, and M.A. Eriksson: Silicon quantum electronics. Rev. Mod. Phys. 85, 961 (2013).

    Article  CAS  Google Scholar 

  2. L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, and I.L. Chuang: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001).

    Article  CAS  Google Scholar 

  3. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, and A.S. Zibrov: Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579 (2017).

    Article  CAS  Google Scholar 

  4. J. Zhang, G. Pagano, P.W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A.V. Gorshkov, Z.X. Gong, and C. Monroe: Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601 (2017).

    Article  CAS  Google Scholar 

  5. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, and L.M.K. Vandersypen: Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007).

    Article  CAS  Google Scholar 

  6. M.B. Hastings, D. Wecker, B. Bauer, and M. Troyer: Improving quantum algorithms for quantum chemistry. Quantum Inf. Comput. 15, 1 (2015).

    CAS  Google Scholar 

  7. L.M.K. Vandersypen, H. Bluhm, J.S. Clarke, A.S. Dzurak, R. Ishihara, A. Morello, D.J. Reilly, L.R. Schreiber, and M. Veldhorst: Interfacing spin qubits in quantum dots and donors-hot, dense, and coherent. npj Quant. Inf. 3, 34 (2017).

    Article  Google Scholar 

  8. A.J. Landig, J.V. Koski, P. Scarlino, U.C. Mendes, A. Blais, C. Reichl, W. Wegscheider, A. Wallraff, K. Ensslin, and T. Ihn: Coherent spin-photon coupling using a resonant exchange qubit. Nature 560, 179 (2018).

    Article  CAS  Google Scholar 

  9. N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U.C. Mendes, A. Blais, G. Scappucci, and L.M.K. Vandersypen: Strong spin-photon coupling in silicon. Science 359, 1123 (2018).

    Article  CAS  Google Scholar 

  10. X. Mi, M. Benito, S. Putz, D.M. Zajac, J.M. Taylor, G. Burkard, and J.R. Petta: A coherent spin–photon interface in silicon. Nature 555, 599 (2018).

    Article  CAS  Google Scholar 

  11. T. Ito, T. Otsuka, S. Amaha, M.R. Delbecq, T. Nakajima, J. Yoneda, K. Takeda, G. Allison, A. Noiri, K. Kawasaki, and S. Tarucha: Detection and control of charge states in a quintuple quantum dot. Sci. Rep. 6, 39113 (2016).

    Article  CAS  Google Scholar 

  12. J. Park, Y. Ahn, J.A. Tilka, K.C. Sampson, D.E. Savage, J.R. Prance, C.B. Simmons, M.G. Lagally, S.N. Coppersmith, M.A. Eriksson, M.V. Holt, and P.G. Evans: Electrode-stress-induced nanoscale disorder in Si quantum electronic devices. APL Mater. 4, 0661021 (2016).

    Google Scholar 

  13. A. Pateras, J. Park, Y. Ahn, J.A. Tilka, M.V. Holt, C. Reichl, W. Wegscheider, T.A. Baart, J-P. Dehollain, U. Mukhopadhyay, L.M.K. Vandersypen, and P.G. Evans: Mesoscopic elastic distortions in GaAs quantum dot heterostructures. Nano Lett. 18, 2780 (2018).

    Article  CAS  Google Scholar 

  14. J.H. Davies and I.A. Larkin: Theory of potential modulation in lateral surface superlattices. Phys. Rev. B 49, 4800 (1994).

    Article  CAS  Google Scholar 

  15. I.A. Larkin, J.H. Davies, A.R. Long, and R. Cuscó: Theory of potential modulation in lateral surface superlattices. II. Piezoelectric effect. Phys. Rev. B 56, 15242 (1997).

    Article  CAS  Google Scholar 

  16. P. Chaudhari: Grain growth and stress relief in thin films. J. Vac. Sci. Technol. 9, 520 (1972).

    Article  CAS  Google Scholar 

  17. M.J. Hytch and A.M. Minor: Observing and measuring strain in nanostructures and devices with transmission electron microscopy. MRS Bull. 39, 138 (2014).

    Article  Google Scholar 

  18. M.J. Hytch, J.L. Putaux, and J.M. Penisson: Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy. Nature 423, 270 (2003).

    Article  CAS  Google Scholar 

  19. S.M. Durbin and G.C. Follis: Darwin theory of heterostructure diffraction. Phys. Rev. B 51, 10127 (1995).

    Article  CAS  Google Scholar 

  20. A. Pateras, J. Park, Y. Ahn, M.V. Holt, H. Kim, L.J. Mawst, and P.G. Evans: Dynamical scattering in coherent hard X-ray nanobeam Bragg diffraction. Phys. Rev. B 97, 235414 (2018).

    Article  CAS  Google Scholar 

  21. J.A. Tilka, J. Park, Y. Ahn, A. Pateras, K.C. Sampson, D.E. Savage, J.R. Prance, C.B. Simmons, S.N. Coppersmith, M.A. Eriksson, M.G. Lagally, M.V. Holt, and P.G. Evans: Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures. J. Appl. Phys. 120, 015304 (2016).

    Article  Google Scholar 

  22. I.A. Blech and E.S. Meieran: Enhanced X-ray diffraction from substrate crystals containing discontinuous surface films. J. Appl. Phys. 38, 2913 (1967).

    Article  CAS  Google Scholar 

  23. S. Gehrsitz, H. Sigg, N. Herres, K. Bachem, K. Kohler, and F.K. Reinhart: Compositional dependence of the elastic constants and the lattice parameter of AlxGa1−xAs. Phys. Rev. B 60, 11601 (1999).

    Article  CAS  Google Scholar 

  24. E. Chason, B.W. Sheldon, L.B. Freund, J.A. Floro, and S.J. Hearne: Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 689 (2002).

    Article  Google Scholar 

  25. J.A. Floro, S.J. Hearne, J.A. Hunter, P. Kotula, E. Chason, S.C. Seel, and C.V. Thompson: The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films. J. Appl. Phys. 89, 4886 (2001).

    Article  CAS  Google Scholar 

  26. W.D. Nix and B.M. Clemens: Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14, 3467 (1999).

    Article  CAS  Google Scholar 

  27. L.B. Freund and S. Suresh: Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, U.K., 2003).

    Google Scholar 

  28. P.A. Flinn, D.S. Gardner, and W.D. Nix: Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history. IEEE Trans. Electron Devices 34, 689 (1987).

    Article  Google Scholar 

  29. T.C. Hodge, S.A. Bidstrup-Allen, and P.A. Kohl: Stresses in thin film metallization. IEEE Trans. Compon., Packag., Manuf. Technol., Part A 20, 241 (1997).

    Article  CAS  Google Scholar 

  30. M. Dong, X. Cui, H. Wang, L. Zhu, G. Jin, and B. Xu: Effect of different substrate temperatures on microstructure and residual stress of Ti films. Rare Met. Mater. Eng. 45, 843 (2016).

    Article  CAS  Google Scholar 

  31. S. Zhou, W. Wu, and T. Shao: Effect of post deposition annealing on residual stress stability of gold films. Surf. Coat. Technol. 304, 222 (2016).

    Article  CAS  Google Scholar 

  32. T. Thorbeck and N.M. Zimmerman: Formation of strain-induced quantum dots in gated semiconductor nanostructures. AIP Adv. 5, 087107 (2015).

    Article  Google Scholar 

  33. E. Skuras, A.R. Long, I.A. Larkin, J.H. Davies, and M.C. Holland: Anisotropic piezoelectric effect in lateral surface superlattices. Appl. Phys. Lett. 70, 871 (1997).

    Article  CAS  Google Scholar 

  34. J. Fischer, M. Trif, W.A. Coish, and D. Loss: Spin interactions, relaxation and decoherence in quantum dots. Solid State Commun. 149, 1443 (2009).

    Article  CAS  Google Scholar 

  35. A.G. Shabalin, O.M. Yefanov, V.L. Nosik, V.A. Bushuev, and I.A. Vartanyants: Dynamical effects in Bragg coherent X-ray diffraction imaging of finite crystals. Phys. Rev. B 96, 064111 (2017).

    Article  Google Scholar 

  36. A. Ying, B. Osting, I.C. Noyan, C.E. Murray, M. Holt, and J. Maser: Modeling of kinematic diffraction from a thin silicon film illuminated by a coherent, focused X-ray nanobeam. J. Appl. Crystallogr. 43, 587 (2010).

    Article  CAS  Google Scholar 

  37. S. Hönig, R. Hoppe, J. Patommel, A. Schropp, S. Stephan, S. Schöder, M. Burghammer, and C.G. Schroer: Full optical characterization of coherent X-ray nanobeams by ptychographic imaging. Opt. Express 19, 16324 (2011).

    Article  Google Scholar 

  38. J. Goodman: Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

    Google Scholar 

Download references

Acknowledgments

A.P. and P.G.E. acknowledge support from the U.S. DOE, Basic Energy Sciences, Materials Sciences and Engineering, under contract no. DE-FG02-04ER46147 for the X-ray scattering studies and analysis. Work at TU Delft was supported by The Netherlands Organization of Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Pateras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pateras, A., Carnis, J., Mukhopadhyay, U. et al. Electrode-induced lattice distortions in GaAs multi-quantum-dot arrays. Journal of Materials Research 34, 1291–1301 (2019). https://doi.org/10.1557/jmr.2019.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.61

Navigation