Skip to main content
Log in

Research on the coarsening mechanism of precipitations and its effect on toughness for nickel-based weld metal during thermal aging

  • Novel Synthesis and Processing of Metals
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Coarsening mechanism of precipitations was investigated in a weld metal of Alloy 617 during long-term aging at 750 °C, and its effect on impact toughness was clarified distinctly. The needle-like M6C phases at the grain boundary nucleated and coarsened at 2000 h and then presented a stable size with aging to 8000 h. Spherical γ′ phase grew rapidly with the rate of 0.0121 nm/h when aged at 1000 h; then, its ripening rate (RR) reduced to 0.0033 nm/h at 8000 h and stabilized around it. The coarsening of M6C and γ′ was, respectively, controlled by interface diffusion and volume diffusion with the coarsening rate constant of 7.865 × 10−20 m2/s and 1.519 × 10−27 m3/s. Interaction of M6C and γ′ could facilitate their coarsening and cause dramatic decrease in toughness at the early stage. At aging to 8000 h and more, the lower RR of needle-like M6C phases and γ′ phases helped to form stable toughness at a later stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Z.B. Yang, J. Sun, S. Lu, and L. Vitos: Assessing elastic property and solid-solution strengthening of binary Ni–Co, Ni–Cr, and ternary Ni–Co–Cr alloys from first-principles theory. J. Mater. Res. 33, 2763 (2018).

    Article  CAS  Google Scholar 

  2. L. Yuan, R. Hu, and J. Li: Evolution behavior of superlattice phase with Pt2Mo-type structure in Ni–Cr–Mo alloy with low atomic Mo/Cr ratio. J. Mater. Res. 31, 427 (2016).

    Article  CAS  Google Scholar 

  3. R. Cozar and A. Pineau: Morphology of γ′ and γ″ precipitates and thermal stability of Inconel 718 type alloys. Metall. Trans. 4, 47 (1973).

    Article  CAS  Google Scholar 

  4. J. Xie, J. Shen, N. Chen, and S. Seetharaman: Site preference and mechanical properties of Cr23−xTxC6 and Fe21T2C6 (T = Mo, W). Acta Mater. 54, 4653 (2006).

    Article  CAS  Google Scholar 

  5. C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II, 2nd ed. (Wiley-Interscience Press, USA, 1987); pp. 415–420.

    Google Scholar 

  6. F.M. Yang, X.F. Sun, W. Zhang, Y.P. Kang, H.R. Guan, and Z.Q. Hu: Secondary M6C precipitation in K40S cobalt-base alloy. Mater. Lett. 49, 160 (2001).

    Article  CAS  Google Scholar 

  7. C.S. Wang, Y.A. Guo, J.T. Guo, and L.Z. Zhou: Gamma prime stability and its influence on tensile behavior of a wrought superalloy with different Fe contents. J. Mater. Res. 31, 1361 (2016).

    Article  CAS  Google Scholar 

  8. J. Ribis, E. Bordas, P. Trocellier, Y. Serruys, Y. de Carlan, and A. Legris: Comparison of the neutron and ion irradiation response of nano-oxides in oxide dispersion strengthened materials. J. Mater. Res. 30, 2210 (2015).

    Article  CAS  Google Scholar 

  9. Y.S. Li, Z. Chen, Y.L. Lu, and Y.X. Wang: Coarsening kinetics of intermetallic precipitates in Ni75AlxV25−x alloys. J. Mater. Res. 22, 61 (2007).

    Article  Google Scholar 

  10. S. Meher, M.C. Carroll, T.M. Pollock, and L.J. Carroll: Designing nickel base alloys for microstructural stability through low γ–γ′ interfacial energy and lattice misfit. Mater. Des. 140, 249 (2018).

    Article  CAS  Google Scholar 

  11. Y. Wu, Y. Liu, C. Li, X. Xia, J. Wu, and H. Li: Coarsening behavior of γ′ precipitates in the γ′ + γ area of a Ni3Al-based alloy. J. Alloys Compd. 771, 526 (2019).

    Article  CAS  Google Scholar 

  12. H.J. Zhou, F. Xue, H. Chang, and Q. Feng: Effect of Mo on microstructural characteristics and coarsening kinetics of γ′ precipitates in Co–Al–W–Ta–Ti alloys. J. Mater. Sci. Technol. 34, 799 (2018).

    Article  Google Scholar 

  13. F. Zhang, W. Cao, C. Zhang, S. Chen, J. Zhu, and D. Lv: Simulation of Co-precipitation kinetics of γ′ and γ″ in superalloy 718. In Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications E. Ott, X.B. Liu, J. Andersson, Z.N. Bi, K. Bockenstedt, I. Dempster, J. Groh, K. Heck, P. Jablonski, M. Kaplan, D. Nagahama and C. Sudbrack eds.; Springer Publishing: Berlin, Germany, 2018; P.147.

    Chapter  Google Scholar 

  14. G.E. Fuchs: Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater. Sci. Eng., A 300, 52 (2001).

    Article  Google Scholar 

  15. E.O. Ezugwu, Z.M. Wang, and A.R. Machado: The machinability of nickel-based alloys: A review. J. Mater. Process. Technol. 86, 1 (1999).

    Article  Google Scholar 

  16. Q. Wu, H. Song, R.W. Swindeman, J.P. Shingledecker, and V.K. Vasudevan: Microstructure of long-term aged IN617 Ni-base superalloy. Metall. Mater. Trans. A 39, 2569 (2008).

    Article  Google Scholar 

  17. X.Z. Zhou and Y.C. Su: Microstructure of long-term aged IN617 Ni-base superalloy. Mater. Sci. Eng., A 527, 5153 (2010).

    Article  Google Scholar 

  18. E. Donoso, R. Espinoza, M.J. Diánez, and J.M. Criad: Microcalorimetric study of the annealing hardening mechanism of a Cu–2.8Ni–1.4Si (at.%) alloy. Mater. Sci. Eng., A 556, 612 (2012).

    Article  CAS  Google Scholar 

  19. J. Oblak, D. Paulonis, and D. Duvall: Coherency strengthening in Ni base alloys hardened by DO 22 γ′ precipitates. Metall. Trans. 5, 143 (1974).

    Article  CAS  Google Scholar 

  20. L.R. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, and Z.Q. Hu: Effect of carbon addition on the creep properties in a Ni-based single crystal superalloy. Mater. Sci. Eng., A 385, 105 (2004).

    Article  Google Scholar 

  21. J. Yang, Q. Zheng, X. Sun, H. Guan, and Z. Hu: Relative stability of carbides and their effects on the properties of K465 superalloy. Mater. Sci. Eng., A 429, 341 (2006).

    Article  Google Scholar 

  22. M.K. Ali, M.S.J. Hashmi, and B.S. Yilbas: Fatigue properties of the refurbished INCO-617 alloy. J. Mater. Process. Technol. 118, 45 (2001).

    Article  CAS  Google Scholar 

  23. O.Y. Jun, R.W. Seog, S. Changmo, K.I. Hiun, and H.J. Hwa: Grain boundary filmlike Fe–Mo–Cr phase in nitrogen-added type 316l stainless steels. J. Mater. Res. 14, 8 (1999).

    Article  Google Scholar 

  24. L. Lirong, C. Maokai, T. Sugui, Z.Y. Zhang, and J. Tao: Effect of Re content on precipitation behaviour of secondary phases in a single-crystal Ni-based superalloy during high-temperature thermal exposure. Mater. High Temp. 35, 355 (2018).

    Article  Google Scholar 

  25. K. Yashiro, F. Kurose, Y. Nakashima, K. Kubo, Y. Tomita, and H.M. Zbib: Discrete dislocation dynamics simulation of cutting of γ′ precipitate and interfacial dislocation network in Ni-based superalloys. Int. J. Plast. 22, 713 (2006).

    Article  CAS  Google Scholar 

  26. Y.Q. Sun and P.M. Hazzledine: A TEM weak-beam study of dislocations in γ′ in a deformed Ni-based superalloy. Philos. Mag. A 58, 603 (1988).

    Article  CAS  Google Scholar 

  27. R. Finsy: On the critical radius in Ostwald ripening. Langmuir 20, 2975 (2004).

    Article  CAS  Google Scholar 

  28. P. Streitenberger and D. Zöllner: The envelope of size distributions in Ostwald ripening and grain growth. Acta Mater. 88, 334 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports by the National Natural Science Foundation of China (Nos. U1660101, 51675336, and 51775338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenggui Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, T., Xu, H., Cui, H. et al. Research on the coarsening mechanism of precipitations and its effect on toughness for nickel-based weld metal during thermal aging. Journal of Materials Research 34, 2705–2713 (2019). https://doi.org/10.1557/jmr.2019.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.43

Navigation