Skip to main content
Log in

Cell viability assessments of green synthesized water-soluble AgInS2/ZnS core/shell quantum dots against different cancer cell lines

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Chalcopyrite quantum dots (QDs) have emerged as a safe alternative to cadmium-based QDs for bio-applications. However, the research on AgInS2 chalcopyrite QDs has not been widely explored in terms of their toxicity. Herein, we report a synthesis of biocompatible AgInS2/ZnS QDs via a greener approach. The emission intensity of the as-synthesized AgInS2 core QDs was enhanced 2-fold after the ZnS shell growth. X-ray diffraction revealed the tetragonal crystal structure of QDs, and high-resolution transmission electron microscope images show that the QDs are spherical in shape and crystalline in nature. Cell viability assays conducted on different cell lines, such as HeLa, A549, and BHK-21 cells, indicated that AgInS2/ZnS QDs are least toxic at a QD concentration range of 100 µg/mL. The fluorescent microscope analysis of A549 cells incubated with AgInS2/ZnS QDs shows that the QDs were accumulated in the cell membranes. The as-synthesized AgInS2/ZnS QDs are less toxic and eco-friendly, and can be used for biolabeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, and R. Mahiou: Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index. ACS Appl. Mater. Interfaces 6, 252–258 (2013).

    Article  Google Scholar 

  2. G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, and E.H. Sargent: Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015).

    Article  CAS  Google Scholar 

  3. L. Jing, S.V. Kershaw, Y. Li, X. Huang, Y. Li, A.L. Rogach, and M. Gao: Aqueous based semiconductor nanocrystals. Chem. Rev. 116, 10623–10730 (2016).

    Article  CAS  Google Scholar 

  4. M. Gazouli, A. Lyberopoulou, P. Pericleous, S. Rizos, G. Aravantinos, N. Nikiteas, N.P. Anagnou, and E.P. Efstathopoulos: Development of a quantum-dot-labelled magnetic immunoassay method for circulating colorectal cancer cell detection. World J. Gastroenterol. 18, 4419 (2012).

    Article  CAS  Google Scholar 

  5. E. Liandris, M. Gazouli, M. Andreadou, L.A. Sechi, V. Rosu, and J. Ikonomopoulos: Detection of pathogenic mycobacteria based on functionalized quantum dots coupled with immunomagnetic separation. PLoS One 6, e20026 (2011).

    Article  CAS  Google Scholar 

  6. Z. Ranjbar-Navazi, Y. Omidi, M. Eskandani, and S. Davaran: Cadmium-free quantum dot-based theranostics. TrAC. Trends Anal. Chem. 118, 386–400 (2019).

    Article  CAS  Google Scholar 

  7. E. Petryayeva, W.R. Algar, and I.L. Medintz: Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 67, 215–252 (2013).

    Article  CAS  Google Scholar 

  8. Y. Chen, S. Li, L. Huang, and D. Pan: Low-cost and gram-scale synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots in an electric pressure cooker. Nanoscale 6, 1295–1298 (2014).

    Article  CAS  Google Scholar 

  9. L. Li, T.J. Daou, I. Texier, T.T. Kim Chi, N.Q. Liem, and P. Reiss: Highly luminescent CuInS2/ZnS core/shell nanocrystals: Cadmium-free quantum dots for in vivo imaging. Chem. Mater. 21, 2422–2429 (2009).

    Article  CAS  Google Scholar 

  10. Z. Lin, X. Fei, Q. Ma, X. Gao, and X. Su: CuInS2 quantum dots@ silica near-infrared fluorescent nanoprobe for cell imaging. New J. Chem. 38, 90–96 (2014).

    Article  CAS  Google Scholar 

  11. D. Deng, L. Qu, and Y. Gu: Near-infrared broadly emissive AgInSe2/ZnS quantum dots for biomedical optical imaging. J. Mater. Chem. C 2, 7077–7085 (2014).

    Article  CAS  Google Scholar 

  12. M.Z. Fahmi and J.Y. Chang: Forming double layer-encapsulated quantum dots for bio-imaging and cell targeting. Nanoscale 5, 1517–1528 (2013).

    Article  CAS  Google Scholar 

  13. D. Che, X. Zhu, H. Wang, Y. Duan, Q. Zhang, and Y. Li: Aqueous synthesis of high bright and tunable near-infrared AgInSe2–ZnSe quantum dots for bioimaging. J. Colloid Interface Sci. 463, 1–7 (2016).

    Article  CAS  Google Scholar 

  14. X. Hu, T. Chen, Y. Xu, M. Wang, W. Jiang, and W. Jiang: Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission. J. Lumin. 200, 189–195 (2018).

    Article  CAS  Google Scholar 

  15. X. Kang, L. Huang, Y. Yang, and D. Pan: Scaling up the aqueous synthesis of visible light emitting multinary AgInS2/ZnS core/shell quantum dots. J. Phys. Chem. C 119, 7933–7940 (2015).

    Article  CAS  Google Scholar 

  16. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, and A. Jemal: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-Cancer J. Clin. 68, 394–424 (2018).

    Article  Google Scholar 

  17. B.M. May, S. Parani, and O.S. Oluwafemi: Detection of ascorbic acid using green synthesized AgInS2 quantum dots. Mater. Lett. 236, 432–435 (2019).

    Article  CAS  Google Scholar 

  18. L. Zi, Y. Huang, Z. Yan, and S. Liao: Thioglycolic acid-capped CuInS2/ZnS quantum dots as fluorescent probe for cobalt ion detection. J. Lumin. 148, 359–363 (2014).

    Article  CAS  Google Scholar 

  19. W.W. Xiong, G.H. Yang, X.C. Wu, and J.J. Zhu: Microwave-assisted synthesis of highly luminescent AgInS2/ZnS nanocrystals for dynamic intracellular Cu(II) detection. J. Mater. Chem. B 1, 4160–4165 (2013).

    Article  CAS  Google Scholar 

  20. H. Shang, Q. Di, M. Ji, B. Bai, J. Liu, W. Chen, M. Xu, H. Rong, J. Liu, and J. Zhang: From indium-doped Ag2S to AgInS2 nanocrystals: Low-temperature in situ conversion of colloidal Ag2S nanoparticles and their NIR fluorescence. Chem. - Eur. J. 24, 13676–13680 (2018).

    Article  CAS  Google Scholar 

  21. S. Peng, S. Zhang, S.G. Mhaisalkar, and S. Ramakrishna: Synthesis of AgInS2 nanocrystal ink and its photoelectrical application. Phys. Chem. Chem. Phys. 14, 8523–8529 (2012).

    Article  CAS  Google Scholar 

  22. M. Mousavi-Kamazani and M. Salavati-Niasari: A simple microwave approach for synthesis and characterization of Ag2S–AgInS2 nanocomposites. Composites, Part B 56, 490–496 (2014).

    Article  CAS  Google Scholar 

  23. L. Tan, S. Liu, X. Li, I.S. Chronakis, and Y. Shen: A new strategy for synthesizing AgInS2 quantum dots emitting brightly in near-infrared window for in vivo imaging. Colloids Surf., B 125, 222–229 (2015).

    Article  CAS  Google Scholar 

  24. L. Wang, X. Kang, and D. Pan: Gram-scale synthesis of hydrophilic PEI-coated AgInS2 quantum dots and its application in hydrogen peroxide/glucose detection and cell imaging. Inorg. Chem. 56, 6122–6130 (2017).

    Article  CAS  Google Scholar 

  25. H. Shinchi, M. Wakao, N. Nagata, M. Sakamoto, E. Mochizuki, T. Uematsu, S. Kuwabata, and Y. Suda: Cadmium-free sugar-chain-immobilized fluorescent nanoparticles containing low-toxicity ZnS-AgInS2 cores for probing lectin and cells. Bioconjugate Chem. 25, 286–295 (2014).

    Article  CAS  Google Scholar 

  26. J.Y. Chang, G.Q. Wang, C.Y. Cheng, W.X. Lin, and J.C. Hsu: Strategies for photoluminescence enhancement of AgInS2 quantum dots and their application as bioimaging probes. J. Mater. Chem. 22, 10609–10618 (2012).

    Article  CAS  Google Scholar 

  27. J. Song, C. Ma, W. Zhang, X. Li, W. Zhang, R. Wu, X. Cheng, A. Ali, M. Yang, L. Zhu, and R. Xia: Bandgap and structure engineering via cation exchange: From binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS Appl. Mater. Interfaces 8, 24826–24836 (2016).

    Article  CAS  Google Scholar 

  28. G. Chen, F. Tian, Y. Zhang, Y. Zhang, C. Li, and Q. Wang: Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv. Funct. Mater. 24, 2481–2488 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank UJ-Global Excellence Stature; National Research Foundation (NRF) under Scarce Skills and Innovation scholarship; Competitive Program for Rated Researchers (CPRR), Grant No. 106060; and the University of Johannesburg (URC) and Faculty of Science (FRC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatobi S. Oluwafemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oluwafemi, O.S., May, B.M.M., Parani, S. et al. Cell viability assessments of green synthesized water-soluble AgInS2/ZnS core/shell quantum dots against different cancer cell lines. Journal of Materials Research 34, 4037–4044 (2019). https://doi.org/10.1557/jmr.2019.362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.362

Navigation