Skip to main content
Log in

Fabrication of iron carbide by plasma-enhanced atomic layer deposition

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Iron carbide (Fe1−xCx) thin films were successfully grown by plasma-enhanced atomic layer deposition (PEALD) using bis(N, N′-di-tert-butylacetamidinato)iron(II) as a precursor and H2 plasma as a reactant. Smooth and pure Fe1−xCx thin films were obtained by the PEALD process in a layer-by-layer film growth fashion, and the x in the nominal formula of Fe1−xCx is approximately 0.26. For the wide PEALD temperature window from 80 to 210 °C, a saturated film growth rate of 0.04 nm/cycle was achieved. X-ray diffraction and transition electron microscope measurements show that the films grown at deposition temperature 80–170 °C are amorphous; however, at 210 °C, the crystal structure of Fe7C3 is formed. The conformality and resistivity of the deposited films have also been studied. At last, the PEALD Fe1−xCx on carbon cloth shows excellent electrocatalytic performance for hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. J.C. Sánchez-López, S. Dominguez-Meister, T.C. Rojas, M. Colasuonno, M. Bazzan, and A. Patelli: Tribological properties of TiC/a-C:H nanocomposite coatings prepared via HiPIMS. Appl. Surf. Sci. 440, 458–466 (2018).

    Article  Google Scholar 

  2. D. Martínez-Martínez, C. López-Cartes, A. Fernández, and J.C. Sánchez-López: Influence of the microstructure on the mechanical and tribological behavior of TiC/a-C nanocomposite coatings. Thin Solid Films 517, 1662–1671 (2009).

    Article  Google Scholar 

  3. A.A. Voevodin and J.S. Zabinski: Supertough wear-resistant coatings with ‘chameleon’ surface adaptation. Thin Solid Films 370, 223–231 (2000).

    Article  CAS  Google Scholar 

  4. J. Wang, F. Xu, H. Jin, Y. Chen, and Y. Wang: Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 29, 1605838 (2017).

    Article  Google Scholar 

  5. X. Fan, Z. Peng, R. Ye, H. Zhou, and X. Guo: M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 9, 7407–7418 (2015).

    Article  CAS  Google Scholar 

  6. W. Xiong, Q. Guo, Z. Guo, H. Li, R. Zhao, Q. Chen, Z. Liu, and X. Wang: Atomic layer deposition of nickel carbide for supercapacitors and electrocatalytic hydrogen evolution. J. Mater. Chem. A 6, 4297–4304 (2018).

    Article  CAS  Google Scholar 

  7. J. Yu, C. Yang, J. Li, Y. Ding, L. Zhang, M.Z. Yousaf, J. Lin, R. Pang, L. Wei, L. Xu, F. Sheng, C. Li, G. Li, L. Zhao, and Y. Hou: Multifunctional Fe5C2 nanoparticles: A targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv. Mater. 26, 4114–4120 (2014).

    Article  CAS  Google Scholar 

  8. T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro: Structure and tribology of biocompatible Ti–C:H coatings. Surf. Coat. Technol. 202, 5790–5793 (2008).

    Article  CAS  Google Scholar 

  9. J. Yang, W. Ma, D. Chen, A. Holmen, and B.H. Davis: Fischer–Tropsch synthesis: A review of the effect of CO conversion on methane selectivity. Appl. Catal., A 470, 250–260 (2014).

    Article  CAS  Google Scholar 

  10. U. Jansson and E. Lewin: Sputter deposition of transition-metal carbide films—A critical review from a chemical perspective. Thin Solid Films 536, 1–24 (2013).

    Article  CAS  Google Scholar 

  11. L. Hui, Z-Q. Chen, Z. Xie, and C. Li: Stability, magnetism and hardness of iron carbides from first-principles calculations. J. Supercond. Novel Magn. 31, 353–364 (2018).

    Article  CAS  Google Scholar 

  12. W. Tang, Z. Zhen, C. Yang, L. Wang, T. Cowger, H. Chen, T. Todd, K. Hekmatyar, Q. Zhao, Y. Hou, and J. Xie: Fe5C2 nanoparticles with high MRI contrast enhancement for tumor imaging. Small 10, 1245–1249 (2014).

    Article  CAS  Google Scholar 

  13. I. Morjan, R. Alexandrescu, M. Scarisoreanu, C. Fleaca, F. Dumitrache, I. Soare, E. Popovici, L. Gavrila, E. Vasile, V. Ciupina, and N.C. Popa: Controlled manufacturing of nanoparticles by the laser pyrolysis: Application to cementite iron carbide. Appl. Surf. Sci. 255, 9638–9642 (2009).

    Article  CAS  Google Scholar 

  14. C. Yang, H. Zhao, Y. Hou, and D. Ma: Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 134, 15814–15821 (2012).

    Article  CAS  Google Scholar 

  15. Z. Yang, T. Zhao, X. Huang, X. Chu, T. Tang, Y. Ju, Q. Wang, Y. Hou, and S. Gao: Modulating the phases of iron carbide nanoparticles: From a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions. Chem. Sci. 8, 473–481 (2017).

    Article  CAS  Google Scholar 

  16. D. Chaira, B.K. Mishra, and S. Sangal: Efficient synthesis and characterization of iron carbide powder by reaction milling. Powder Technol. 191, 149–154 (2009).

    Article  CAS  Google Scholar 

  17. I. Jouanny, V. Demange, J. Ghanbaja, and E. Bauer-Grosse: Structural characterization of Fe–C coatings prepared by reactive triode-magnetron sputtering. J. Mater. Res. 25, 1859–1869 (2011).

    Article  Google Scholar 

  18. V. Krisyuk, A.N. Gleizes, L. Aloui, A. Turgambaeva, B. Sarapata, N. Prud’Homme, F. Senocq, D. Samélor, A. Zielinska-Lipiec, D. de Caro, and C. Vahlas: Chemical vapor deposition of iron, iron carbides, and iron nitride films from amidinate precursors. J. Electrochem. Soc. 157, D454–D461 (2010).

    Article  CAS  Google Scholar 

  19. B.C. Mallick, C-T. Hsieh, K-M. Yin, Y.A. Gandomi, and K-T. Huang: Review—On atomic layer deposition: Current progress and future challenges. ECS J. Solid State Sci. Technol. 8, N55–N78 (2019).

    Article  CAS  Google Scholar 

  20. V. Miikkulainen, M. Leskelä, M. Ritala, and R.L. Puurunen: Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 113, 021301 (2013).

    Google Scholar 

  21. Q. Guo, Z. Guo, J. Shi, W. Xiong, H. Zhang, Q. Chen, Z. Liu, and X. Wang: Atomic layer deposition of nickel carbide from a nickel amidinate precursor and hydrogen plasma. ACS Appl. Mater. Interfaces 10, 8384–8390 (2018).

    Article  CAS  Google Scholar 

  22. Q. Fan, Z. Guo, Z. Li, Z. Wang, L. Yang, Q. Chen, Z. Liu, and X. Wang: Atomic layer deposition of cobalt carbide thin films from cobalt amidinate and hydrogen plasma. ACS Appl. Electron. Mater. 1, 444–453 (2019).

    Article  CAS  Google Scholar 

  23. H. Li, Y. Gao, Y. Shao, Y. Su, and X. Wang: Vapor-phase Atomic layer deposition of Co9S8 and its application for supercapacitors. Nano Lett. 15, 6689–6695 (2015).

    Article  CAS  Google Scholar 

  24. R. Zhao, S. Xiao, S. Yang, and X. Wang: Surface thermolytic behavior of nickel amidinate and its implication on the atomic layer deposition of nickel compounds. Chem. Mater. 31, 5172–5180 (2019).

    Article  CAS  Google Scholar 

  25. R. Zhao and X. Wang: Initial growth and agglomeration during atomic layer deposition of nickel sulfide. Chem. Mater. 31, 445–453 (2019).

    Article  CAS  Google Scholar 

  26. Z. Guo and X. Wang: Atomic layer deposition of the metal pyrites FeS2, CoS2, and NiS2. Angew. Chem., Int. Ed. 57, 5898–5902 (2018).

    Article  CAS  Google Scholar 

  27. W. Xiong, Z. Guo, H. Li, R. Zhao, and X. Wang: Rational bottom-up engineering of electrocatalysts by atomic layer deposition: A case study of FexCo1−xSy-based catalysts for electrochemical hydrogen evolution. ACS Energy Lett. 2, 2778–2785 (2017).

    Article  CAS  Google Scholar 

  28. M.M. Kerrigan, J.P. Klesko, S.M. Rupich, C.L. Dezelah, R.K. Kanjolia, Y.J. Chabal, and C.H. Winter: Substrate selectivity in the low temperature atomic layer deposition of cobalt metal films from bis(1,4-di-tert-butyl-1,3-diazadienyl) cobalt and formic acid. J. Chem. Phys. 146, 8 (2017).

    Article  Google Scholar 

  29. J-M. Park, S. Kim, J. Hwang, W.S. Han, W. Koh, W-J. Lee: Plasma-enhanced atomic layer deposition of nickel thin film using bis(1,4-diisopropyl-1,4-diazabutadiene)nickel. J. Vac. Sci. Technol., A 36, 01A119 (2018).

    Article  Google Scholar 

  30. B.S. Lim, A. Rahtu, J-S. Park, and R.G. Gordon: Synthesis and characterization of volatile, thermally stable, reactive transition metal amidinates. Inorg. Chem. 42, 7951–7958 (2003).

    Article  CAS  Google Scholar 

  31. H.B. Profijt, S.E. Potts, M.C.M. van de Sanden, and W.M.M. Kessels: Plasma-assisted atomic layer deposition: Basics, opportunities, and challenges. J. Vac. Sci. Technol., A 29, 050801 (2011).

    Article  Google Scholar 

  32. C. Zhang, B. Huang, Y. Ding, P. Yan, T. Shao, V.F. Tarasenko, and E. K. Baksht: Effect of cathode and anode materials on the high-energy electron beam in the nanosecond-pulse breakdown in gas-filled diodes. J. Phys. D: Appl. Phys. 52, 275202 (2019).

    Article  CAS  Google Scholar 

  33. Z.W. Liu, X.F. Yang, A.M. Zhu, G.L. Zhao, and Y. Xu: Determination of the OH radical in atmospheric pressure dielectric barrier discharge plasmas using near infrared cavity ring-down spectroscopy. Eur. Phys. J. D 48, 365–373 (2008).

    Article  CAS  Google Scholar 

  34. Z. Guo, H. Li, Q. Chen, L. Sang, L. Yang, and Z. Liu, X. Wang: Low-temperature atomic layer deposition of high purity, smooth, low resistivity copper films by using amidinate precursor and hydrogen plasma. Chem. Mater. 27, 5988–5996 (2015).

    Article  CAS  Google Scholar 

  35. Q. Fan, L. Sang, D. Jiang, L. Yang, H. Zhang, Q. Chen, and Z. Liu: Plasma enhanced atomic layer deposition of cobalt nitride with cobalt amidinate. J. Vac. Sci. Technol., A 37, 010904 (2019).

    Article  Google Scholar 

  36. Y. Hu, X. Tian, Q. Fan, Z. Wang, B. Liu, L. Yang, and Z. Liu: Fabrication and characterization of iron and iron carbide thin films by plasma enhanced pulsed chemical vapor deposition. Plasma Sci. Technol. 21, 105502 (2019).

    Article  CAS  Google Scholar 

  37. K. Kim, K. Lee, S. Han, W. Jeong, and H. Jeon: Characteristics of cobalt thin films deposited by remote plasma ALD method with dicobalt octacarbonyl. J. Electrochem. Soc. 154, H177–H181 (2007).

    Article  CAS  Google Scholar 

  38. D-Y. Moon, D-S. Han, S-Y. Shin, J-W. Park, B.M. Kim, and J.H. Kim: Effects of the substrate temperature on the Cu seed layer formed using atomic layer deposition. Thin Solid Films 519, 3636–3640 (2011).

    Article  CAS  Google Scholar 

  39. A. Furlan, U. Jansson, J. Lu, L. Hultman, and M. Magnuson: Structure and bonding in amorphous iron carbide thin films. J. Phys. Condens. Matter 27 (2015).

  40. W. Kowbel and C.H. Shan: The mechanism of fiber–matrix interactions in carbon–carbon composites. Carbon 28, 287–299 (1990).

    Article  CAS  Google Scholar 

  41. E. Bauer-Grosse and A. Aouni: Glass-forming range and glass thermal stability in binary 3d TM–C systems. J. Non-Cryst. Solids 353, 3644–3649 (2007).

    Article  CAS  Google Scholar 

  42. S. Tajima and S. Hirano: Synthesis and properties of Fe3C film by r.f. magnetron sputtering. J. Mater. Sci. 28, 2715–2720 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11775028 and 11875090), Collaborative Innovation Center of Green Printing & Publishing Technology (Grant No. 15208), and Beijing Institute of Graphic Communication Project (Grant Nos. Ea201801, KM201810015009, and KM201810015005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Zhang, X., Hu, Y. et al. Fabrication of iron carbide by plasma-enhanced atomic layer deposition. Journal of Materials Research 35, 813–821 (2020). https://doi.org/10.1557/jmr.2019.332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.332

Navigation