Skip to main content

Advertisement

Log in

PbO–SiO2-based glass doped with B2O3 and Na2O for coating of thermoelectric materials

  • Energy Conversion and Storage Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the recent years, there has been high interest in renewable energy and highly efficient devices, promoted by the need to stop changing weather patterns. One of the most interesting methods for this is using thermoelectric materials, which are low cost and highly durable. However, the need for higher efficiency values and a higher resistance to oxidation leads to a technological problem in the field of coating. Due to its diverse properties, glass coating has been proposed as a solution to both sublimation of the thermoelectric materials and oxidation. Lead silicate glasses with 30% PbO were doped with 0–5% of Na2O and B2O3 to produce glasses with different properties. Differential scanning calorimetry and dilatometry measurements showed that the glass temperature can vary between 428 and 505 °C. The softening temperature is varied between 493 and 560 °C. Below Tg, the coefficient of thermal expansion is varied between 5.9 and 9 ppm/K and above Tg it varied between 17 and 58 ppm/K. This allows the tuning of the glass composition for each thermoelectric material, such as 0.5% B and 1% Na doped PbO -SiO2 glass for skutterudites and 1% doped B and 1% Na doped for Mg2Si, PbTe, and GeTe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. D.M. Rowe: CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, Florida, 1995); pp. 21–38.

    Google Scholar 

  2. S. Fan, J. Zhao, J. Guo, Q. Yan, J. Ma, and H.H. Hang: p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Appl. Phys. Lett. 96, 182104 (2010).

    Article  CAS  Google Scholar 

  3. X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z.F. Ren: Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett. 10, 3373–3378 (2010).

    Article  CAS  Google Scholar 

  4. Y. Gelbstein, J. Davidow, S.N. Girard, D.Y. Chung, and M. Kanatzidis: Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance. Adv. Energy Mater. 3, 815–820 (2013).

    Article  CAS  Google Scholar 

  5. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis: Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160 (2011).

    Article  CAS  Google Scholar 

  6. H. Li, X. Tang, Q. Zhang, and C. Uher: Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance. Appl. Phys. Lett. 93, 252109 (2008).

    Article  CAS  Google Scholar 

  7. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012).

    Article  CAS  Google Scholar 

  8. J. Yang and T. Caillat: Thermoelectric materials for space and automotive power generation. MRS Bull. 31, 224–229 (2006).

    Article  CAS  Google Scholar 

  9. C.C. Li and C.R. Kao: Contacts for PbTe. In Advanced Thermoelectrics, Z. Ren, Y. Lan, and Q. Zhang, eds. (CRC Press, Boca Raton, Florida, 2017); pp. 635–658.

    Chapter  Google Scholar 

  10. D.K. Aswal, R. Basu, and A. Singh: Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers. Manage. 114, 50–67 (2016).

    Article  Google Scholar 

  11. W. Liu, Q. Jie, H.S. Kim, and Z. Ren: Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater. 87, 357–376 (2015).

    Article  CAS  Google Scholar 

  12. Z.L. Wang, T. Araki, T. Onda, and Z.C. Chen: Effect of annealing on microstructure and thermoelectric properties of hot-extruded Bi–Sb–Te bulk materials. J. Mater. Sci. 53, 9117–9130 (2018).

    Article  CAS  Google Scholar 

  13. Y. Sadia, T. Ohaion-Raz, O. Ben-Yehuda, M. Korngold, and Y. Gelbstein: Criteria for extending the operation periods of thermoelectric converters based on IV–VI compounds. J. Solid State Chem. 241, 79–85 (2016).

    Article  CAS  Google Scholar 

  14. L. Zhang, W. Wang, B. Ren, and J. Guo: The effect of adding nano-Bi2Te3 on properties of GeTe-based thermoelectric material. J. Electron. Mater. 42, 1303–1306 (2013).

    Article  CAS  Google Scholar 

  15. E.D. Case: Thermo-mechanical properties of thermoelectric materials. Thermoelectrics and its energy harvesting. In Modules, Systems, and Applications, D.M. Rowe, ed. (CRC Press, Boca Raton, Florida, 2012); p. 581.

    Google Scholar 

  16. D. Zhao, C. Tian, Y. Liu, C. Zhan, and L. Chen: High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test. J. Alloys Compd. 509, 3166–3171 (2011).

    Article  CAS  Google Scholar 

  17. S.K. Bux, M.T. Yeung, E.S. Toberer, G.J. Snyder, R.B. Kaner, and J.P. Fleurial: Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. J. Mater. Chem. 21, 12259–12266 (2011).

    Article  CAS  Google Scholar 

  18. M. Imai, Y. Isoda, and H. Udono: Thermal expansion of semiconducting silicides β-FeSi2 and Mg2Si. Intermetallics 67, 75–80 (2015).

    Article  CAS  Google Scholar 

  19. S.H. Park, Y. Kim, and C.Y. Yoo: Oxidation suppression characteristics of the YSZ coating on Mg2Si thermoelectric legs. Ceram. Int. 42, 10279–10288 (2016).

    Article  CAS  Google Scholar 

  20. P. Nieroda, K. Mars, J. Nieroda, J. Leszczyński, M. Król, E. Drożdż, P. Jeleń, M. Sitarz, and A. Koleżyński: New high temperature amorphous protective coatings for Mg2Si thermoelectric material. Ceram. Int. 45, 10230–10235 (2019).

    Article  CAS  Google Scholar 

  21. J. Leszczyński, P. Nieroda, J. Nieroda, R. Zybała, M. Król, A. Łącz, K. Kaszyca, A. Mikuła, M. Schmidt, M. Sitarz, and A. Koleżyński: Si–O–C amorphous coatings for high temperature protection of In0.4Co4Sb12 skutterudite for thermoelectric applications. J. Appl. Phys. 125, 215113 (2019).

    Article  CAS  Google Scholar 

  22. W. Brostow, T. Datashvili, H.E. Hagg Lobland, T. Hilbig, L. Su, C. Vinado, and J.B. White: Bismuth telluride-based thermoelectric materials: Coatings as protection against thermal cycling effects. J. Mater. Res. 27, 2930 (2012).

    Article  CAS  Google Scholar 

  23. W. Brostow, J. Chang, H.E. Hagg Lobland, J.M. Perez, S. Shipley, J. Wahrmund, and J.B. White: Rheological characterization of molten polymers containing ceramic nanopowders for use in thermoelectric devices. J. Nanosci. Nanotechnol. 15, 6604 (2015).

    Article  CAS  Google Scholar 

  24. W. Brostow, I.K. Chen, and J.B. White: Effects of polymeric coatings on service life of bismuth telluride-based thermoelectric materials. Sustain. Energy Fuels 1, 1376 (2017).

    Article  CAS  Google Scholar 

  25. M.S. El-Genk, H.H. Saber, T. Caillat, and J. Sakamoto: Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers. Manage. 47, 174–200 (2006).

    Article  CAS  Google Scholar 

  26. S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai: Lead silicate glasses: Binary network-former glasses with large amounts of free volume. Phys. Rev. B 82, 134209 (2010).

    Article  CAS  Google Scholar 

  27. I.B. Kacem, L. Gautron, D. Coillot, and D.R. Neuville: Structure and properties of lead silicate glasses and melts. Chem. Geol. 461, 104–114 (2017).

    Article  CAS  Google Scholar 

  28. G.J. Bair: II, The correlation of physical properties with atomic arrangement. J. Am. Ceram. Soc. 19, 347–358 (1936).

    Article  CAS  Google Scholar 

  29. I.A. Gee, D. Holland, and C.F. McConville: Atomic environments in binary lead silicate and ternary alkali lead silicate glasses. Phys. Chem. Glasses 42, 339–348 (2001).

    CAS  Google Scholar 

  30. J.E. Shelby: Properties/structure relationships in lead silicate glasses. Glastech. Ber. 56, 1057–1062 (1983).

    CAS  Google Scholar 

  31. R.D. Greenough, P. Dentschuk, and S.B. Palmer: Thermal expansion of lead silicate glasses. J. Mater. Sci. 16, 599–603 (1981).

    Article  CAS  Google Scholar 

  32. R.F. Geller, A.S. Creamer, and E.N. Bunting: The system PbO–SiO2. J. Res. Natl. Bur. Stand 13, 237–244 (1934).

    Article  CAS  Google Scholar 

  33. I. Agote, M.A. Lagos, J. Tunbridge, R. Dixon, M. Reece, H. Ning, R. Gilchrist, R. Summers, Y. Gelbstein, K. Simpson, and C. Rouaud: PM functional materials: Thermoelectric materials for automotive and marine applications. In European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings (The European Powder Metallurgy Association, Shropshire, UK., 2014); p. 1.

    Google Scholar 

  34. W.H. Zachariasen: The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932).

    Article  CAS  Google Scholar 

  35. S. Sakka and J.D. Mackenzie: Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J. Non-Cryst. Solids 6, 145–162 (1971).

    Article  CAS  Google Scholar 

  36. J.E. Shelby: Thermal expansion of mixed-alkali silicate glasses. J. Appl. Phys. 47, 4489–4496 (1976).

    Article  CAS  Google Scholar 

  37. R. Jabra, J. Phalippou, and J. Zarzycki: Synthesis and characterization of glasses from SiO2–B2O3 system obtained by hot-pressing of gels. Rev. Chim. Miner. 16, 245–266 (1979).

    CAS  Google Scholar 

  38. O.C. Mocioiu, M. Zaharescu, I. Atkinson, A.M. Mocioiu, and P. Budrugeac: Study of crystallization process of soda lead silicate glasses by thermal and spectroscopic methods. J. Therm. Anal. Calorim. 117, 131–139 (2014).

    Article  CAS  Google Scholar 

  39. K. Kobayashi: DTA and MOS characteristics for PbO–B2O3–SiO2–GeO2 passivation glasses. J. Non-Cryst. Solids 109, 277–279 (1989).

    Article  CAS  Google Scholar 

  40. A. Khanna, A. Saini, B. Chen, F. González, and B. Ortiz: Structural characterization of PbO–B2O3–SiO2 glasses. Glass Technol.: Eur. J. Glass Sci. Technol., Part B 55, 65–73 (2014).

    CAS  Google Scholar 

  41. V. Sudarsan, V.K. Shrikhande, G.P. Kothiyal, and S.K. Kulshreshtha: Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses. J. Phys.: Condens. Matter 14, 6553 (2002).

    CAS  Google Scholar 

  42. J.S. Tse, X.D. Wang, D.T. Jiang, N. Chen, and J.Z. Jiang: High energy synchrotron X-ray diffraction study of lead oxide silicate glasses at the Canadian light source. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 626, 144–146 (2011).

    Article  CAS  Google Scholar 

  43. G.J. Bair: The constitution of lead oxide-silica glasses: I, atomic arrangement. J. Am. Ceram. Soc. 19, 339–347 (1936).

    Article  CAS  Google Scholar 

  44. M.D. Karkhanavala and F.A. Hummel: Thermal expansion of some simple glasses. J. Am. Ceram. Soc. 35, 215–219 (1952).

    Article  CAS  Google Scholar 

  45. A. Fluegel: Statistical regression modelling of glass properties—A tutorial. Glass Technol.: Eur. J. Glass Sci. Technol., Part A 50, 25–46 (2009).

    CAS  Google Scholar 

  46. A. Fluegel: Thermal expansion calculation for silicate glasses at 210 °C based on a systematic analysis of global databases. Glass Technol.: Eur. J. Glass Sci. Technol., Part A 51, 191–201 (2010).

    CAS  Google Scholar 

  47. C.A. Angell: Glass transition. In Encyclopedia of Materials: Science and Technology, K.H. Jürgen Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, and P. Veyssière, eds. (Elsevier, Amsterdam, Netherlands, 2004); pp. 1–11.

    Google Scholar 

  48. A. Fluegel: Glass viscosity calculation based on a global statistical modelling approach. Glass Technol.: Eur. J. Glass Sci. Technol., Part A 48, 13–30 (2007).

    CAS  Google Scholar 

  49. O.V. Mazurin: Glass properties: Compilation, evaluation, and prediction. J. Non-Cryst. Solids 351, 1103–1112 (2005).

    Article  CAS  Google Scholar 

  50. B.H. Toby and R.B. Von Dreele: GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of authors, Y.G., holds the Samuel Ayrton Chair in Metallurgy. The authors would like to thank Dima Mogilyansky for the XRD analysis, Yacov Weinberg for the sample preparation for dilatometry, and Yair George for the glass melting and quenching.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatir Sadia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadia, Y., Ben-Ayoun, D. & Gelbstein, Y. PbO–SiO2-based glass doped with B2O3 and Na2O for coating of thermoelectric materials. Journal of Materials Research 34, 3563–3572 (2019). https://doi.org/10.1557/jmr.2019.282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.282

Navigation