Skip to main content
Log in

Residual stress–driven test technique for freestanding ultrathin films: Elastic behavior and residual strain

  • Nanomechanics and Testing
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Elastic modulus and residual stress in freestanding ultrathin films (<100 nm) are characterized using bilayer cantilevers. The cantilevers comprise a test film and a well-characterized reference material (SU-8). When released from the substrate, residual stresses in the bilayer cantilever cause it to deflect with measurable curvatures, allowing the determination of both stiffness and residual stress of the test film. The technique does not require sophisticated mechanical test equipment and serves as a useful metrology tool for characterizing coatings immediately after fabrication in a clean room assembly line. The measured biaxial modulus and residual strain of 75 nm copper films are 211 ± 19 GPa and (7.05 ± 0.22) × 10−3, respectively. Additional experiments on the freestanding structures yield a mean Young’s modulus of 115 GPa. These properties are in close agreement with those measured from additional residual stress–driven structures developed on the same coatings by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. E. Arzt: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611–5626 (1998).

    Article  CAS  Google Scholar 

  2. E.N. Hahn and M.A. Meyers: Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng., A 646, 101–134 (2015).

    Article  CAS  Google Scholar 

  3. A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter: On the validity of the Hall–Petch relationship in nanocrystalline materials. Scr. Metall. 23, 1679–1683 (1989).

    Article  CAS  Google Scholar 

  4. M.A. Haque and M.T.A. Saif: Mechanical behavior of 30–50 mn thick aluminum films under uniaxial tension. Scr. Mater. 47, 863–867 (2002).

    Article  CAS  Google Scholar 

  5. B. Budiansky and R.J. O’Connell: Elastic-moduli of a cracked solid. Int. J. Solids Struct. 12, 81–97 (1976).

    Article  Google Scholar 

  6. H.B. Huang: Mechanical properties of freestanding polycrystalline metallic thin films and multilayers. Ph.D. thesis, Harvard University, Cambridge, Massachusetts, 1998.

    Google Scholar 

  7. C.W. Nan, X.P. Li, K.F. Cai, and J.Z. Tong: Grain size-dependent elastic moduli of nanocrystals. J. Mater. Sci. Lett. 17, 1917–1919 (1998).

    Article  CAS  Google Scholar 

  8. S.R. Phillpot, D. Wolf, and H. Gleiter: Molecular-dynamics study of the synthesis and characterization of a fully dense, 3-dimensional nanocrystalline material. J. Appl. Phys. 78, 847–861 (1995).

    Article  CAS  Google Scholar 

  9. K. Zhou: Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics. Mater. Sci. Eng., A 615, 92–97 (2014).

    Article  CAS  Google Scholar 

  10. B.C. Okolo: Stress and microstructure of sputter deposited thin copper and niobium films. Ph.D. thesis, Universitätsbibliothek der Universität Stuttgart, Stuttgart, 2003.

    Google Scholar 

  11. X.X. Li: Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus. Appl. Phys. Lett. 83, 3081–3308 (2003).

    Article  CAS  Google Scholar 

  12. S. Suresh, T.G. Nieh, and B.W. Choi: Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41, 951–957 (1999).

    Article  CAS  Google Scholar 

  13. J.J. Vlassak and W.D. Nix: A new bulge test technique for the determination of Young modulus and Poisson’s ratio of thin-films. J. Mater. Res. 7, 3242–3249 (1992).

    Article  CAS  Google Scholar 

  14. G.D. Sim, J.H. Park, M.D. Uchic, P.A. Shade, S.B. Lee, and J.J. Vlassak: An apparatus for performing microtensile tests at elevated temperatures inside a scanning electron microscope. Acta Mater. 61, 7500–7510 (2013).

    Article  CAS  Google Scholar 

  15. J.Y. Chang, G.P. Yu, and J.H. Huang: Determination of Young’s modulus and Poisson’s ratio of thin films by combining sin2ψ X-ray diffraction and laser curvature methods. Thin Solid Films 517, 6759–6766 (2009).

    Article  CAS  Google Scholar 

  16. M. Coulombier, G. Guisbiers, M.S. Colla, R. Vayrette, J.P. Raskin, and T. Pardoen: On-chip stress relaxation testing method for freestanding thin film materials. Rev. Sci. Instrum. 83, 9 (2012).

    Article  Google Scholar 

  17. A. Favache: A generic “micro-stoney” method for the measurement of internal stress and elastic modulus of ultrathin films. Rev. Sci. Instrum. 87, 9 (2016).

    Article  Google Scholar 

  18. T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix: Mechanical deflection of cantilever microbeams—A new technique for testing the mechanical-properties of thin-films. J. Mater. Res. 3, 931–942 (1988).

    Article  Google Scholar 

  19. G.K. Cuddalorepatta, H. Li, D. Pantuso, and J.J. Vlassak: Stress–strain behavior of freestanding ultra thin films (2019). Manuscript in preparation.

  20. G.K. Cuddalorepatta, W.M. van Rees, H. Li, D. Pantuso, L.N. Mahadevan, and J.J. Vlassak: Poisson’s ratio and residual strain of freestanding ultra thin films. J. Mech. Phys. Solids (2019). Manuscript in preparation.

  21. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger: SU-8: A low-cost negative resist for MEMS. J. Micromech. Microeng. 7, 121–124 (1997).

    Article  CAS  Google Scholar 

  22. M. Hopcroft, T. Kramer, G. Kim, K. Takashima, Y. Higo, D. Moore, and J. Brugger: Micromechanical testing of SU-8 cantilevers. Fatigue Fract. Eng. Mater. Struct. 28, 735–742 (2005).

    Article  Google Scholar 

  23. H. Landolt and R. Börnstein: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  24. J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561–563 (1998).

    Article  Google Scholar 

  25. D. Prokoshkina and V.A. Esin: Grain boundary width, energy and self-diffusion in nickel: Effect of material purity. Acta Mater. 61, 5188 (2013).

    Article  CAS  Google Scholar 

  26. G.D. Sim, Y.S. Choi, D. Lee, K.H. Oh, and J.J. Vlassak: High tensile strength of sputter-deposited ZrB2 ceramic thin films measured up to 1016 K. Acta Mater. 113, 32–40 (2016).

    Article  CAS  Google Scholar 

  27. J.D. Eshelby: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. London, Ser. A 241, 376–396 (1957).

    Article  Google Scholar 

  28. H.B. Huang and F. Spaepen: Tensile testing of free-standing cu, ag and al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261–3269 (2000).

    Article  CAS  Google Scholar 

  29. H.M. Ledbetter and E.R. Naimon: Elastic properties of metals and alloys. II. Copper. J. Phys. Chem. Ref. Data 3, 897 (1974).

    Article  CAS  Google Scholar 

  30. S.S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen: Processing of thin SU-8 films. J. Micromech. Microeng. 18, 10 (2008).

    Article  Google Scholar 

  31. M. Nordstrom, S. Keller, and M. Lillemose: SU-8 cantilevers for bio/chemical sensing; fabrication, characterization and development of novel read-out methods. Sensors 8, 1595–1612 (2008).

    Article  CAS  Google Scholar 

  32. S.J. Lee, W. Shi, P. Maciel, and S.W. Cha: Top-edge profile control for SU-8 structural photoresist. In Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (Cat. No. 03CH37488) (IEEE, Boise, Idaho, 2003); pp. 389–390.

    Chapter  Google Scholar 

  33. C.V. Thompson: Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159–190 (2000).

    Article  CAS  Google Scholar 

  34. L.B. Freund, J.A. Floro, and E. Chason: Extensions of the stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl. Phys. Lett. 74, 1987 (1999).

    Article  CAS  Google Scholar 

  35. R.W. Schafer: What is a Savitzky–Golay filter? [lecture notes]. IEEE Signal Process. Mag. 28, 111–117 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in this paper was supported by Intel Corporation. The test structures were fabricated at the Integrated Sciences Cleanroom and Nanofabrication Facility at Boston College, the Harvard University Center for Nanoscale Systems (CNS), which is supported by the National Science Foundation under NSF ECCS award No. 1541959, and Materials Research Science and Engineering Center at Harvard University, which is supported by the National Science Foundation under Award No. DMR-14-20570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayatri K. Cuddalorepatta.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuddalorepatta, G.K., Sim, GD., Li, H. et al. Residual stress–driven test technique for freestanding ultrathin films: Elastic behavior and residual strain. Journal of Materials Research 34, 3474–3482 (2019). https://doi.org/10.1557/jmr.2019.278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.278

Navigation