Skip to main content
Log in

Collagen and elastin scaffold by electrospinning for skin tissue engineering applications

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In recent years, tissue engineering has helped to reduce hospital stays and deaths caused by skin wounds. Scaffolds are one of the main factors that influence the success of any tissue graft. Collagen is one of the main components of the extracellular matrix, and there has been much interest in new sources for application as a biomaterial. In this work, a tissue engineering scaffold was developed using the electrospinning technique. The chicken skin was used as an alternative source to obtain collagen. The combination of this collagen with elastin was successfully electrospun, and a distribution of diameters was obtained, less than 100 nm. In vitro tests showed the adhesion and proliferation of the cells, as well as an absence of cytotoxicity from non–cross-linked scaffolds and scaffolds that were cross-linked with carbonyldiimidazole. The structure and composition of the developed scaffolding provide a favorable environment for cell growth and generating a skin substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. R.J. Hay, M. Augustin, C.E.M. Griffiths, W. Sterry, and Board of the International League of Dermatological Societies and the Grand Challenges Consultation Groups: The global challenge for skin health. Br. J. Dermatol. 172, 1469–1472 (2015).

    Article  CAS  Google Scholar 

  2. K. Vig, A. Chaudhari, S. Tripathi, S. Dixit, R. Sahu, S. Pillai, V. Dennis, and S. Singh: Advances in skin regeneration using tissue engineering. Int. J. Mol. Sci. 18, 789 (2017).

    Article  Google Scholar 

  3. Y.R. Park, H.W. Ju, J.M. Lee, D-K. Kim, O.J. Lee, B.M. Moon, H.J. Park, J.Y. Jeong, Y.K. Yeon, and C.H. Park: Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Int. J. Biol. Macromol. 93, 1567–1574 (2016).

    Article  CAS  Google Scholar 

  4. D. Sundaramurthi, U.M. Krishnan, and S. Sethuraman: Electrospun nanofibers as scaffolds for skin tissue engineering. Polym. Rev. 54, 348–376 (2014).

    Article  CAS  Google Scholar 

  5. J.R. Dias, P.L. Granja, and P.J. Bártolo: Advances in electrospun skin substitutes. Prog. Mater. Sci. 84, 314–334 (2016).

    Article  Google Scholar 

  6. P. Ranjbarvan, M. Mahmoudifard, M. Kehtari, A. Babaie, S. Hamedi, S. Mirzaei, M. Soleimani, and S. Hosseinzadeh: Natural compounds for skin tissue engineering by electrospinning of nylon-beta vulgaris. ASAIO J. 64, 261–269 (2018).

    Article  CAS  Google Scholar 

  7. G. Ramanathan, S. Singaravelu, M.D. Raja, N. Nagiah, P. Padmapriya, K. Ruban, K. Kaveri, T.S. Natarajan, U.T. Sivagnanam, and P.T. Perumal: Fabrication and characterization of a collagen coated electrospun poly(3-hydroxybutyric acid)-gelatin nanofibrous scaffold as a soft bio-mimetic material for skin tissue engineering applications. RSC Adv. 6, 7914–7922 (2016).

    Article  CAS  Google Scholar 

  8. F-M. Chen and X. Liu: Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 53, 86–168 (2016).

    Article  CAS  Google Scholar 

  9. K.A. Munasinghe, J.G. Schwarz, and A.K. Nyame: Chicken collagen from law market value by-products as an alternate source. J. Food Process. 2015, 1 (2015).

    Google Scholar 

  10. C. Zhou, Y. Li, X. Yu, H. Yang, H. Ma, A.E.A. Yagoub, Y. Cheng, J. Hu, and P.N.Y. Otu: Extraction and characterization of chicken feet soluble collagen. LWT–Food Sci. Technol. 74, 145–153 (2016).

    Article  CAS  Google Scholar 

  11. S. Cliche, J. Amiot, C. Avezard, and C. Gariepy: Extraction and characterization of collagen with or without telopeptides from chicken skin. Poult. Sci. 82, 503–509 (2003).

    Article  CAS  Google Scholar 

  12. Z. Gojkovic, I. Marova, P. Matouskova, S. Obruca, and P. Miloslav: Use of ultrasonic spectroscopy and viscosimetry for the characterization of chicken skin collagen in comparison with collagens from other animal tissues. Prep. Biochem. Biotechnol. 44, 761–771 (2014).

    Article  CAS  Google Scholar 

  13. L. Buttafoco, N.G. Kolkman, P. Engbers-Buijtenhuijs, A.A. Poot, P.J. Dijkstra, I. Vermes, and J. Feijen: Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27, 724–734 (2006).

    Article  CAS  Google Scholar 

  14. J. Rnjak-Kovacina, S.G. Wise, Z. Li, P.K.M. Maitz, C.J. Young, Y. Wang, and A.S. Weiss: Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Acta Biomater. 8, 3714–3722 (2012).

    Article  CAS  Google Scholar 

  15. A. Chaudhari, K. Vig, D. Baganizi, R. Sahu, S. Dixit, V. Dennis, S. Singh, and S. Pillai: Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int. J. Mol. Sci. 17, 1974 (2016).

    Article  Google Scholar 

  16. A.W.C. Chua, Y.C. Khoo, B.K. Tan, K.C. Tan, C.L. Foo, and S.J. Chong: Skin tissue engineering advances in severe burns: Review and therapeutic applications. Burns Trauma. 4, 3 (2016).

    Article  Google Scholar 

  17. J. Ho, C. Walsh, D. Yue, A. Dardik, and U. Cheema: Current advancements and strategies in tissue engineering for wound healing: A comprehensive review. Adv. Wound Care 6, 191–209 (2017).

    Article  Google Scholar 

  18. M. Sekuła and E.K. Zuba-Surma: Biomaterials and stem cells: Promising tools in tissue engineering and biomedical applications. In Biomaterials in Regenerative Medicine (InTech, 2018); p. 361.

  19. Y.K. Lin and D.C. Liu: Effects of pepsin digestion at different temperatures and times on properties of telopeptide-poor collagen from bird feet. Food Chem. 94, 621–625 (2006).

    Article  CAS  Google Scholar 

  20. J.H. Muyonga, C.G.B. Cole, and K.G. Duodu: Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 86, 325–332 (2004).

    Article  CAS  Google Scholar 

  21. F. Pati, B. Adhikari, and S. Dhara: Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour. Technol. 101, 3737–3742 (2010).

    Article  CAS  Google Scholar 

  22. P. Singh, S. Benjakul, S. Maqsood, and H. Kishimura: Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus). Food Chem. 124, 97–105 (2011).

    Article  CAS  Google Scholar 

  23. J-W. Woo, S-J. Yu, S-M. Cho, Y-B. Lee, and S-B. Kim: Extraction optimization and properties of collagen from yellowfin tuna (Thunnus albacares) dorsal skin. Food Hydrocolloids 22, 879–887 (2008).

    Article  CAS  Google Scholar 

  24. B.B. Doyle, E.G. Bendit, and E.R. Blout: Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers 14, 937–957 (1975).

    Article  CAS  Google Scholar 

  25. K.J. Payne and A. Veis: Fourier transform ir spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers 27, 1749–1760 (1988).

    Article  CAS  Google Scholar 

  26. W.K. Surewicz and H.H. Mantsch: New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 952, 115–130 (1988).

    Article  CAS  Google Scholar 

  27. A.M.D.G. Plepis, G. Goissis, and D.K. Das-Gupta: Dielectric and pyroelectric characterization of anionic and native collagen. Polym. Eng. Sci. 36, 2932–2938 (1996).

    Article  Google Scholar 

  28. Y. Mina, K. MohammadReza, A. Ruhollah Mehdinavaz, S. Keyvan, and R. Masoud: Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design. Curr. Chem. Lett. 3, 175–182 (2014).

    Article  Google Scholar 

  29. L. Ortega-Arroyo, E.S. Martin-Martinez, M.A. Aguilar-Mendez, A. Cruz-Orea, I. Hernandez-Pérez, and C. Glorieux: Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response. Starch-Stärke. 65, 814–821 (2013).

    Article  CAS  Google Scholar 

  30. F.T. Bosman and I. Stamenkovic: Functional structure and composition of the extracellular matrix. J. Pathol. 200, 423–428 (2003).

    Article  CAS  Google Scholar 

  31. S.J. Lee, J.J. Yoo, G.J. Lim, A. Atala, and J. Stitzel: In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J. Biomed. Mater. Res., Part A 83, 999–1008 (2007).

    Article  Google Scholar 

  32. K. Su Rho, L. Jeong, G. Lee, B-M. Seo, Y. Jeong Park, S-D. Hong, S. Roh, J. Jin Cho, W.H. Park, and B-M. Min: Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27, 1452–1461 (2006).

    Article  CAS  Google Scholar 

  33. J.E. Gough, C.A. Scotchford, and S. Downes: Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res. 61, 121–130 (2002).

    Article  CAS  Google Scholar 

  34. S. Jocic, G. Mestres, and M. Tenje: Fabrication of user-friendly and biomimetic 1,1′-carbonyldiimidazole cross-linked gelatin/agar microfluidic devices. Mater. Sci. Eng., C 76, 1175–1180 (2017).

    Article  CAS  Google Scholar 

  35. H. Koch, N. Hammer, S. Ossmann, K. Schierle, U. Sack, J. Hofmann, M. Wecks, and A. Boldt: Tissue engineering of ureteral grafts: Preparation of biocompatible crosslinked ureteral scaffolds of porcine origin. Front. Bioeng. Biotechnol. 3, 1–16 (2015).

    Article  Google Scholar 

  36. M.G. Haugh, C.M. Murphy, R.C. McKiernan, C. Altenbuchner, and F.J. O’Brien: Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng., Part A 17, 1201–1208 (2011).

    Article  CAS  Google Scholar 

  37. H.M. Powell and S.T. Boyce: EDC cross-linking improves skin substitute strength and stability. Biomaterials 27, 5821–5827 (2006).

    Article  CAS  Google Scholar 

  38. Y-H. Shan, L-H. Peng, X. Liu, X. Chen, J. Xiong, and J-Q. Gao: Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Int. J. Pharm. 479, 291–301 (2015).

    Article  CAS  Google Scholar 

  39. B. Zeybek, M. Duman, and A.S. Ürkmez: Electrospinning of nanofibrous polycaprolactone (PCL) and collagen-blended polycaprolactone for wound dressing and tissue engineering. Usak Univ. J. Mater. Sci. 3, 121 (2014).

    CAS  Google Scholar 

  40. M. Li, M.J. Mondrinos, X. Chen, M.R. Gandhi, F.K. Ko, and P.I. Lelkes: Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J. Biomed. Mater. Res., Part A 79, 963–973 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

J. Jiménez Vázquez is thankful for the scholarship program granted by the National Council of Sciences and Technology (CONACYT) and the Institutional Support for Research Incentive Grant (BEIFI-IPN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo San Martín Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez Vázquez, J., San Martín Martínez, E. Collagen and elastin scaffold by electrospinning for skin tissue engineering applications. Journal of Materials Research 34, 2819–2827 (2019). https://doi.org/10.1557/jmr.2019.233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.233

Navigation