Skip to main content
Log in

A review on cyclic deformation damage and fatigue fracture behavior of metallic nanolayered composites

  • Invited Feature Paper - Review
  • Plasticity and Fracture at the Nanoscales
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fatigue performance of metallic nanolayered composites (NLCs) has been gaining more and more attention due to the rapid development in the field of both micro-electro-mechanical systems and high-performance engineering structure materials and the increasing demand for long-term fatigue reliability. Metallic NLCs have exhibited different damage behaviors due to the effect of high-density heterogeneous interface compared with bulk materials and thin metal films. In this review paper, the cyclic deformation damage behavior, fatigue cracking feature, and fatigue properties of some metallic NLCs are reviewed. Effects of length scales, including layer thickness and grain size, on fatigue damage behaviors of the NLCs are revealed, and the transition of the fatigue cracking behavior and the corresponding damage mechanism are discussed. Then, the fatigue properties of some typical metallic NLCs are presented and compared with that of bulk materials and metal thin films. The effect of interface type and grain boundary alignment is also discussed to correlate with fatigue cracking resistance of the NLCs. Finally, some prospective research topics on fatigue performance of metallic NLCs are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M-Y. Seok, J-A. Lee, D-H. Lee, U. Ramamurty, S. Nambu, T. Koseki, and J-i. Jang: Decoupling the contributions of constituent layers to the strength and ductility of a multi-layered steel. Acta Mater. 121, 164 (2016).

    Article  CAS  Google Scholar 

  2. F. Kümmel, T. Hausöl, H.W. Höppel, and M. Göken: Enhanced fatigue lives in AA1050A/AA5005 laminated metal composites produced by accumulative roll bonding. Acta Mater. 120, 150 (2016).

    Article  CAS  Google Scholar 

  3. H.S. Liu, B. Zhang, and G.P. Zhang: Enhanced toughness and fatigue strength of cold roll bonded Cu/Cu laminated composites with mechanical contrast. Scr. Mater. 65, 891 (2011).

    Article  CAS  Google Scholar 

  4. B.X. Liu, L.J. Huang, L. Geng, B. Kaveendran, B. Wang, X.Q. Song, and X.P. Cui: Gradient grain distribution and enhanced properties of novel laminated Ti–TiBw/Ti composites by reaction hot-pressing. Mater. Sci. Eng., A 595, 257 (2014).

    Article  CAS  Google Scholar 

  5. C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. Gao, and Y.T. Zhu: Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater. Today 21, 713–719 (2018).

    Article  CAS  Google Scholar 

  6. M. Huang, C. Xu, G.H. Fan, E. Maawad, W.M. Gan, L. Geng, F.X. Lin, G.Z. Tang, H. Wu, Y. Du, D.Y. Li, K.S. Miao, T.T. Zhang, X.S. Yang, Y.P. Xia, G.J. Cao, H.J. Kang, T.M. Wang, T.Q. Xiao, and H.L. Xie: Role of layered structure in ductility improvement of layered Ti–Al metal composite. Acta Mater. 153, 235 (2018).

    Article  CAS  Google Scholar 

  7. X. Bian, F. Yuan, X. Wu, and Y. Zhu: The evolution of strain gradient and anisotropy in gradient-structured metal. Metall. Mater. Trans. A 48, 3951 (2017).

    Article  CAS  Google Scholar 

  8. I. Radchenko, H.P. Anwarali, S.K. Tippabhotla, and A.S. Budiman: Effects of interface shear strength during failure of semicoherent metal–metal nanolaminates: An example of accumulative roll-bonded Cu/Nb. Acta Mater. 156, 125 (2018).

    Article  CAS  Google Scholar 

  9. H.P. Anwar Ali, I. Radchenko, N. Li, and A. Budiman: The roles of interfaces and other microstructural features in Cu/Nb nanolayers as revealed by in situ beam bending experiments inside an scanning electron microscope (SEM). Mater. Sci. Eng., A 738, 253 (2018).

    Article  CAS  Google Scholar 

  10. X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, and Y. Zhu: Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Mater. 116, 43 (2016).

    Article  CAS  Google Scholar 

  11. S. Nambu, M. Michiuchi, J. Inoue, and T. Koseki: Effect of interfacial bonding strength on tensile ductility of multilayered steel composites. Compos. Sci. Technol. 69, 1936 (2009).

    Article  CAS  Google Scholar 

  12. K.O. Schweitz, J. Chevallier, J. Bottiger, W. Matz, and N. Schell: Hardness in Ag/Ni, Au/Ni, and Cu/Ni multilayers. Philos. Mag. A 81, 2021 (2001).

    Article  CAS  Google Scholar 

  13. P.M. Anderson, T. Foecke, and P.M. Hazzledine: Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27 (1999).

    Article  CAS  Google Scholar 

  14. A. Misra, J.P. Hirth, and R.G. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).

    Article  CAS  Google Scholar 

  15. G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).

    Article  CAS  Google Scholar 

  16. G.P. Zhang, C.A. Volkert, R. Schwaiger, E. Arzt, and O. Kraft: Damage behavior of 200-nm thin copper films under cyclic loading. J. Mater. Res. 20, 201 (2005).

    Article  CAS  Google Scholar 

  17. J.S. Koehler: Attempt to design a strong solid. Phys. Rev. B 2, 547 (1970).

    Article  Google Scholar 

  18. R. Hoagland, T. Mitchell, J. Hirth, and H. Kung: On the strengthening effects of interfaces in multilayer fee metallic composites. Philos. Mag. A 82, 643 (2002).

    CAS  Google Scholar 

  19. Y.P. Li and G.P. Zhang: On plasticity and fracture of nanostructured Cu/X (X = Au, Cr) multilayers: The effects of length scale and interface/boundary. Acta Mater. 58, 3877 (2010).

    Article  CAS  Google Scholar 

  20. X.F. Zhu and G.P. Zhang: Mechanical properties of Cu/Ta and Cu/Ni multilayers, Ph. D Thesis, Institute of Metal Research, Chinese Academy of Sciences (2009).

  21. X.F. Zhu, G.P. Zhang, J. Tan, Y. Liu, and S.J. Zhu: Damage behavior of Cu–Ta bilayered films under cyclic loading. J. Mater. Res. 22, 2478 (2007).

    Article  CAS  Google Scholar 

  22. X.F. Zhu and G.P. Zhang: Tensile and fatigue properties of ultrafine Cu–Ni multilayers. J. Phys. D: Appl. Phys. 42, 055411 (2009).

    Article  CAS  Google Scholar 

  23. Y.C. Wang, A. Misra, and R.G. Hoagland: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54, 1593 (2006).

    Article  CAS  Google Scholar 

  24. H.F. Tan, B. Zhang, X.M. Luo, X.F. Zhu, and G.P. Zhang: High-cycle fatigue properties of ultrafine-scale Cu/Ni laminated composites. Adv. Eng. Mater. 18, 2003 (2016).

    Article  CAS  Google Scholar 

  25. Y.C. Wang, F. Liang, H.F. Tan, B. Zhang, and G.P. Zhang: Enhancing fatigue strength of high-strength ultrafine-scale Cu/Ni laminated composites. Mater. Sci. Eng., A 714, 43 (2018).

    Article  CAS  Google Scholar 

  26. D. Wang, P.A. Gruber, C.A. Volkert, and O. Kraft: Influences of Ta passivation layers on the fatigue behavior of thin Cu films. Mater. Sci. Eng., A 610, 33 (2014).

    Article  CAS  Google Scholar 

  27. Y. Yang, B.I. Imasogie, S.M. Allameh, B. Boyce, K. Lian, J. Lou, and W.O. Soboyejo: Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater. Sci. Eng., A 444, 39 (2007).

    Article  CAS  Google Scholar 

  28. H. Hou, R.F. Hamilton, M.W. Horn, and Y. Jin: NiTi thin films prepared by biased target ion beam deposition co-sputtering from elemental Ni and Ti targets. Thin Solid Films 570, 1 (2014).

    Article  CAS  Google Scholar 

  29. S.X. Zheng, X.M. Luo, D. Wang, and G.P. Zhang: A novel evaluation strategy for fatigue reliability of flexible nanoscale films. Mater. Res. Express 5, 8 (2018).

    Google Scholar 

  30. X.F. Zhu, Y.P. Li, G.P. Zhang, and S.J. Zhu: On strain-localized damage in nanoscale Cu–Ta multilayers on a flexible substrate. Mater. Sci. Eng., A 527, 3279 (2010).

    Article  CAS  Google Scholar 

  31. G.P. Zhang, X.F. Zhu, J. Tan, and Y. Liu: Origin of cracking in nanoscale Cu/Ta multilayers. Appl. Phys. Lett. 89, 3 (2006).

    Google Scholar 

  32. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  33. Y. Chen, Y. Liu, C. Sun, K.Y. Yu, M. Song, H. Wang, and X. Zhang: Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Mater. 60, 6312 (2012).

    Article  CAS  Google Scholar 

  34. J.Y. Zhang, X. Zhang, G. Liu, G.J. Zhang, and J. Sun: Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater. Sci. Eng., A 528, 2982 (2011).

    Article  CAS  Google Scholar 

  35. Q. Zhou, S. Zhang, X. Wei, F. Wang, P. Huang, and K. Xu: Improving the crack resistance and fracture toughness of Cu/Ru multilayer thin films via tailoring the individual layer thickness. J. Alloys Compd. 742, 45 (2018).

    Article  CAS  Google Scholar 

  36. X.F. Zhu, Y.P. Li, G.P. Zhang, J. Tan, and Y. Liu: Understanding nanoscale damage at a crack tip of multilayered metallic composites. Appl. Phys. Lett. 92, 161905 (2008).

    Article  CAS  Google Scholar 

  37. M.Y. He and J.W. Hutchinson: Crack deflection at an interface between dissimilar elastic-materials. Int. J. Solids Struct. 25, 1053 (1989).

    Article  Google Scholar 

  38. M.Y. He, A.G. Evans, and J.W. Hutchinson: Crack deflection at an interface between dissimilar elastic-materials—Role of residual-stresses. Int. J. Solids Struct. 31, 3443 (1994).

    Article  Google Scholar 

  39. J.P. Parmigiani and M.D. Thouless: The roles of toughness and cohesive strength on crack deflection at interfaces. J. Mech. Phys. Solids 54, 266 (2006).

    Article  CAS  Google Scholar 

  40. J. Li, Y. Chen, S. Xue, H. Wang, and X. Zhang: Comparison of size dependent strengthening mechanisms in Ag/Fe and Ag/Ni multilayers. Acta Mater. 114, 154 (2016).

    Article  CAS  Google Scholar 

  41. Y. Liu, Y. Chen, K.Y. Yu, H. Wang, J. Chen, and X. Zhang: Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers. Int. J. Plast. 49, 152 (2013).

    Article  CAS  Google Scholar 

  42. R. Banerjee, X.D. Zhang, S.A. Dregia, and H.L. Fraser: Phase stability in Al/Ti multilayers. Acta Mater. 47, 1153 (1999).

    Article  CAS  Google Scholar 

  43. Q. Zhou, Y. Li, F. Wang, P. Huang, T.J. Lu, and K.W. Xu: Length-scale-dependent deformation mechanism of Cu/X (X = Ru, W) multilayer thin films. Mater. Sci. Eng., A 664, 206 (2016).

    Article  CAS  Google Scholar 

  44. J.W. Yan, G.P. Zhang, X.F. Zhu, H.S. Liu, and C. Yan: Microstructures and strengthening mechanisms of Cu/Ni/W nanolayered composites. Philos. Mag. 93, 434 (2013).

    Article  CAS  Google Scholar 

  45. D. Bufford, Z. Bi, Q.X. Jia, H. Wang, and X. Zhang: Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101, 223112 (2012).

    Article  CAS  Google Scholar 

  46. Y.Y. Lu, R. Kotoka, J.P. Ligda, B.B. Cao, S.N. Yarmolenko, B.E. Schuster, and Q. Wei: The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Mater. 63, 216 (2014).

    Article  CAS  Google Scholar 

  47. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008).

    Article  CAS  Google Scholar 

  48. D.C. Baek and S.B. Lee: Fatigue behavior of electrodeposited nanocrystalline nickel films. In 11th International Conference on the Mechanical Behavior of Materials, M. Guagliano and L. Vergani, eds. (Elsevier Science Bv, Amsterdam, 2011); p. 3006.

    Google Scholar 

  49. P. Cavaliere: Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int. J. Fatigue 31, 1476 (2009).

    Article  CAS  Google Scholar 

  50. J. Aktaa, J. Reszat, M. Walter, K. Bade, and K. Hemker: High cycle fatigue and fracture behavior of LIGA nickel. Scr. Mater. 52, 1217 (2005).

    Article  CAS  Google Scholar 

  51. D. Son, J-j. Kim, T.W. Lim, and D. Kwon: Evaluation of fatigue strength of LIGA nickel film by microtensile tests. Scr. Mater. 50, 1265 (2004).

    Article  CAS  Google Scholar 

  52. S.M. Allameh, J. Lou, F. Kavishe, T. Buchheit, and W.O. Soboyejo: An investigation of fatigue in LIGA Ni MEMS thin films. Mater. Sci. Eng., A 371, 256 (2004).

    Article  CAS  Google Scholar 

  53. T. Hanlon, E.D. Tabachnikova, and S. Suresh: Fatigue behavior of nanocrystalline metals and alloys. Int. J. Fatigue 27, 1147 (2005).

    Article  CAS  Google Scholar 

  54. B.L. Boyce, J.R. Michael, and P.G. Kotula: Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater. 52, 1609 (2004).

    Article  CAS  Google Scholar 

  55. X.J. Sun, C.C. Wang, J. Zhang, G. Liu, G.J. Zhang, X.D. Ding, G.P. Zhang, and J. Sun: Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. J. Phys. D: Appl. Phys. 41, 6 (2008).

    Google Scholar 

  56. D. Wang, C.A. Volkert, and O. Kraft: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).

    Article  CAS  Google Scholar 

  57. G-D. Sim, Y. Hwangbo, H-H. Kim, S-B. Lee, and J.J. Vlassak: Fatigue of polymer-supported Ag thin films. Scr. Mater. 66, 915 (2012).

    Article  CAS  Google Scholar 

  58. R. Daniel, M. Meindlhumer, W. Baumegger, J. Zalesak, B. Sartory, M. Burghammer, C. Mitterer, and J. Keckes: Grain boundary design of thin films: Using tilted brittle interfaces for multiple crack deflection toughening. Acta Mater. 122, 130 (2017).

    Article  CAS  Google Scholar 

  59. N.A. Mara and I.J. Beyerlein: Review: Effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J. Mater. Sci. 49, 6497 (2014).

    Article  CAS  Google Scholar 

  60. S. Zheng, J.S. Carpenter, R.J. McCabe, I.J. Beyerlein, and N.A. Mara: Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals. Sci. Rep. 4, 4226 (2014).

    Article  CAS  Google Scholar 

  61. N.A. Mara, T. Tamayo, A.V. Sergueeva, X. Zhang, A. Misra, and A.K. Mukherjee: The effects of decreasing layer thickness on the high temperature mechanical behavior of Cu/Nb nanoscale multilayers. Thin Solid Films 515, 3241 (2007).

    Article  CAS  Google Scholar 

  62. S.J. Zheng, I.J. Beyerlein, J.S. Carpenter, K.W. Kang, J. Wang, W.Z. Han, and N.A. Mara: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 8 (2013).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 51571199 and 51601198). XML acknowledges the support from “Young Merit Scholars” of Institute of Metal Research, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Ping Zhang.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GP., Liang, F., Luo, XM. et al. A review on cyclic deformation damage and fatigue fracture behavior of metallic nanolayered composites. Journal of Materials Research 34, 1479–1488 (2019). https://doi.org/10.1557/jmr.2019.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.22

Navigation