Skip to main content
Log in

Effects of biomimetic micropattern on titanium deposited with PDA/Cu and nitric oxide release on behaviors of ECs

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Surface modification with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) is an effective method for improving hemocompatibility. Peptide GREDVY immobilized on Ti is of great benefit to endothelialization. Micropattern of PMPC and GREDVY can regulate cells distribution, behaviors, and nitric oxide (NO) release. Copper can be used as catalytic to release NO from a donor in vitro, which can inhibit platelets adhesion, activation, and aggregation. The Ti-PDA(Cu)-M/R(P) micropattern was fabricated with PMMPC-HD {PMMPC [monomer contain MPC and methacrylic acid (MA)] was cross-linked with hexamethylene diamine} and peptide Gly-Arg-Glu-Asp-Val-Tyr (GREDVY) using PDMS stamp, and it was characterized by SEM, FTIR, and XPS. The results demonstrated that the PMPC and peptide GREDVY were immobilized onto polydopamine successfully. Simultaneously, the copper existed in polydopamine was confirmed by XPS. The rate of NO release in vitro catalyzed by copper ions was 1.5–5.3 × 10−10 mol/(cm2 min). It will be beneficial to inhibiting platelets adhesion and proliferation of ECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. D.F. Williams: On the mechanisms of biocompatibility. Biomaterials 29, 2941 (2008).

    Article  CAS  Google Scholar 

  2. G. Li, P. Yang, W. Qin, M.F. Maitz, S. Zhou, and N. Huang: The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials 32, 4691 (2011).

    Article  CAS  Google Scholar 

  3. D. Tousoulis, A.M. Kampoli, C. Tentolouris, N. Papageorgiou, and C. Stefanadis: The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 10, 4 (2012).

    Article  CAS  Google Scholar 

  4. J. Lei, Y. Vodovotz, E. Tzeng, and T.R. Billiar: Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide 35, 175 (2013).

    Article  CAS  Google Scholar 

  5. N. Naghavi, M.A. De, O.S. Alavijeh, B.G. Cousins, and A.M. Seifalian: Nitric oxide donors for cardiovascular implant applications. Small 9, 22 (2013).

    Article  CAS  Google Scholar 

  6. A. de Mel, F. Murad, and A.M. Seifalian: Nitric oxide: A guardian for vascular grafts? Chem. Rev. 111, 5742 (2011).

    Article  CAS  Google Scholar 

  7. L.J. Taite, P. Yang, H.W. Jun, and J.L. West: Nitric oxide-releasing polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. J. Biomed. Mater. Res., Part B 84, 108 (2008).

    Article  CAS  Google Scholar 

  8. X. Li, H. Qiu, P. Gao, Y. Yang, Z. Yang, and N. Huang: Synergetic coordination and catecholamine chemistry for catalytic generation of nitric oxide on vascular stents. NPG Asia Mater. 10, 482 (2018).

    Article  CAS  Google Scholar 

  9. S. Hwang, W. Cha, and M.E. Meyerhoff: Polymethacrylates with a covalently linked CuII–cyclen complex for the in situ generation of nitric oxide from nitrosothiols in blood. Angew. Chem., Int. Ed. 118, 2811 (2006).

    Article  Google Scholar 

  10. Z. Yang, Y. Yang, K. Xiong, X. Li, P. Qi, Q. Tu, F. Jing, Y. Weng, J. Wang, and N. Huang: Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents. Biomaterials 63, 80 (2015).

    Article  CAS  Google Scholar 

  11. P. Zorlutuna, N. Annabi, G. Camci-Unal, M. Nikkhah, J.M. Cha, J.W. Nichol, A. Manbachi, H. Bae, S. Chen, and A. Khademhosseini: Microfabricated biomaterials for engineering 3D tissues. Adv. Mater. 24, 1782 (2012).

    Article  CAS  Google Scholar 

  12. F. Zhang, G. Li, P. Yang, W. Qin, C. Li, and N. Huang: Fabrication of biomolecule-PEG micropattern on titanium surface and its effects on platelet adhesion. Colloids Surf., B 102, 457 (2013).

    Article  CAS  Google Scholar 

  13. J. Chen, J. Ge, B. Guo, K. Gao, and P.X. Ma: Nanofibrous polylactide composite scaffolds with electroactivity and sustained release capacity for tissue engineering. J. Mater. Chem. B 4, 2477 (2016).

    Article  CAS  Google Scholar 

  14. L. Wang, Y. Wu, B. Guo, and P.X. Ma: Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9, 9167 (2015).

    Article  CAS  Google Scholar 

  15. Y. Wu, L. Wang, B. Guo, and P.X. Ma: Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11, 5646 (2017).

    Article  CAS  Google Scholar 

  16. Y. Wu, L. Wang, T. Hu, P.X. Ma, and B. Guo: Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells. J. Colloid Interface Sci. 518, 252 (2018).

    Article  CAS  Google Scholar 

  17. M. Nikkhah, N. Eshak, P. Zorlutuna, N. Annabi, M. Castello, K. Kim, A. Dolatshahi-Pirouz, F. Edalat, H. Bae, and Y. Yang: Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33, 9009 (2012).

    Article  CAS  Google Scholar 

  18. M. Versaevel, T. Grevesse, and S. Gabriele: Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 3, 671 (2012).

    Article  CAS  Google Scholar 

  19. Y. Liu, K. Ai, and L. Lu: Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 5057 (2014).

    Article  CAS  Google Scholar 

  20. H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007).

    Article  CAS  Google Scholar 

  21. H. Ren, J. Wu, C. Xi, N. Lehnert, T. Major, R.H. Bartlett, and M.E. Meyerhoff: Electrochemically modulated nitric oxide (NO) releasing biomedical devices via copper(II)-Tri(2-pyridylmethyl)amine mediated reduction of nitrite. ACS Appl. Mater. Interfaces 6, 3779 (2014).

    Article  CAS  Google Scholar 

  22. J. Pant, M.J. Goudie, S.P. Hopkins, E.J. Brisbois, and H. Handa: Tunable nitric oxide release from S-nitroso-N-acetylpenicillamine via catalytic copper nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 9, 15254 (2017).

    Article  CAS  Google Scholar 

  23. J.L. Harding: Composite materials with embedded metal organic framework catalysts for nitric oxide release from bioavailable S-nitrosothiols. J. Mater. Chem. B 2, 2530 (2014).

    Article  CAS  Google Scholar 

  24. V. Wonoputri, C. Gunawan, S. Liu, N. Barraud, L.H. Yee, M. Lim, and R. Amal: Copper complex in poly(vinyl chloride) as a nitric oxide-generating catalyst for the control of nitrifying bacterial biofilms. ACS Appl. Mater. Interfaces 7, 22148 (2015).

    Article  CAS  Google Scholar 

  25. Z. Jia, H. Li, Y. Zhao, L. Frazer, B. Qian, E. Borguet, F. Ren, and D.A. Dikin: Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites. J. Mater. Sci. 52, 11620 (2017).

    Article  CAS  Google Scholar 

  26. H. Lee, J. Rho, and P.B. Messersmith: Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv. Mater. 21, 431 (2009).

    Article  CAS  Google Scholar 

  27. Z.L. Yang, S. Zhong, Y. Yang, M.F. Maitz, X. Li, Q.F. Tu, P. Qi, H. Zhang, H. Qiu, and J. Wang: Polydopamine-mediated long-term elution of the direct thrombin inhibitor bivalirudin from TiO2 nanotubes for improved vascular biocompatibility. J. Mater. Chem. B 2, 6767 (2014).

    Article  CAS  Google Scholar 

  28. Y. Yang, X. Li, H. Qiu, P. Li, P. Qi, M.F. Maitz, T. You, R. Shen, Z. Yang, W. Tian, and N. Huang: Polydopamine modified TiO2 nanotube arrays for long-term controlled elution of bivalirudin and improved hemocompatibility. ACS Appl. Mater. Interfaces 10, 7649 (2018).

    Article  CAS  Google Scholar 

  29. J. Park, T.F. Brust, H.J. Lee, S.C. Lee, V.J. Watts, and Y. Yeo: Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano 8, 3347 (2014).

    Article  CAS  Google Scholar 

  30. W. Ma, L. Liu, H. Chen, Y. Zhao, P. Yang, and N. Huang: Micropatterned immobilization of membrane-mimicking polymer and peptides for regulation of cell behaviors in vitro. RSC Adv. 8, 20836 (2018).

    Article  CAS  Google Scholar 

  31. Y. Wei, Y. Ji, L.L. Xiao, Q.K. Lin, J.P. Xu, K.F. Ren, and J. Ji: Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. Biomaterials 34, 2588 (2013).

    Article  CAS  Google Scholar 

  32. Y. Liu, T.T. Yang Tan, S. Yuan, and C. Choong: Multifunctional P(PEGMA)–REDV conjugated titanium surfaces for improved endothelial cell selectivity and hemocompatibility. J. Mater. Chem. B 1, 157 (2013).

    Article  CAS  Google Scholar 

  33. S.P. Massia and J.A. Hubbell: Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin alpha 4 beta 1. J. Biol. Chem. 267, 14019 (1992).

    Article  CAS  Google Scholar 

  34. M.S. Hahn, L.J. Taite, J.J. Moon, M.C. Rowland, K.A. Ruffino, and J.L. West: Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27, 2519 (2006).

    Article  CAS  Google Scholar 

  35. J.A. Hubbell, S.P. Massia, N.P. Desai, and P.D. Drumheller: Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Nat. Biotechnol. 9, 568 (1991).

    Article  CAS  Google Scholar 

  36. L. Chen, J. Li, S. Wang, S. Zhu, C. Zhu, B. Zheng, G. Yang, and S. Guan: Surface modification of the biodegradable cardiovascular stent material Mg–Zn–Y–Nd alloy via conjugating REDV peptide for better endothelialization. J. Mater. Res. 33, 4123 (2018).

    Article  CAS  Google Scholar 

  37. J. Wu, W. Lin, Z. Wang, S. Chen, and Y. Chang: Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir 28, 7436 (2012).

    Article  CAS  Google Scholar 

  38. Q. Huang, Y. Yang, R. Hu, C. Lin, L. Sun, and E.A. Vogler: Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel. Colloids Surf., B 125, 134 (2015).

    Article  CAS  Google Scholar 

  39. X. Liu, L. Yuan, D. Li, Z. Tang, Y. Wang, G. Chen, H. Chen, and J.L. Brash: Blood compatible materials: State of the art. J. Mater. Chem. B 2, 5718 (2014).

    Article  CAS  Google Scholar 

  40. W. Ma, P. Yang, J. Li, S. Li, P. Li, Y. Zhao, and N. Huang: Immobilization of poly(MPC) brushes onto titanium surface by combining dopamine self-polymerization and ATRP: Preparation, characterization and evaluation of hemocompatibility in vitro. Appl. Surf. Sci. 349, 445 (2015).

    Article  CAS  Google Scholar 

  41. H. Chen, X. Li, Y. Zhao, J. Li, J. Chen, P. Yang, M.F. Maitz, and N. Huang: Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates. Appl. Surf. Sci. 347, 169 (2015).

    Article  CAS  Google Scholar 

  42. D.E.J. Anderson and M.T. Hinds: Endothelial cell micropatterning: Methods, effects, and applications. Ann. Biomed. Eng. 39, 2329 (2011).

    Article  Google Scholar 

  43. W. Cha and M.E. Meyerhoff: Catalytic generation of nitric oxide from S-nitrosothiols using immobilized organoselenium species. Biomaterials 28, 19 (2007).

    Article  CAS  Google Scholar 

  44. Z. Yang, X. Lei, J. Wang, R. Luo, T. He, H. Sun, and N. Huang: A novel technique toward bipolar films containing alternating nano-layers of allylamine and acrylic acid plasma polymers for biomedical application. Plasma Processes Polym. 8, 208 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by financially supported by the National Key Research and Development Program of China (2016YFC1100402), National Natural Science Foundation of China (Nos. 31570963 and 81330031), and Key Basic Research Project (No. 2011CB606204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Yang or Yuancong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Liu, L., Luo, X. et al. Effects of biomimetic micropattern on titanium deposited with PDA/Cu and nitric oxide release on behaviors of ECs. Journal of Materials Research 34, 2037–2046 (2019). https://doi.org/10.1557/jmr.2019.166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.166

Navigation