Skip to main content
Log in

Mechanism of high-pressure torsion-induced shear banding and lamellar thickness saturation in Co–Cr–Fe–Ni–Nb high-entropy composites

  • Novel Synthesis and Processing of Metals
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-entropy composites (HECs) were subjected to severe straining by high-pressure torsion (HPT) to evaluate their influence on the evolution of microstructure and deformation behavior. Severe straining leads to a homogeneously strained microstructure and inhomogeneous micro-shear bands in these HECs. Nb addition in HECs varies the microstructure from single phase to eutectic, and the Vickers microhardness in HPT HECs increases to 7.45 GPa. Nb addition up to x = 0.80 in as-cast HECs improves the strength of these materials at the expense of its plasticity. Nevertheless, severe straining provides a better combination of strength and ductility without sacrificing its plasticity. Such improvement in properties is attributed to the evolved microstructural features, formation of “transformation-shear bands (T-SBs)” and “deformation-shear bands (D-SBs)” at severe straining. This assures the homogeneous deformation by shear banding and suggests that shear banding is the dominant deformation mechanism when the lamellar spacing becomes saturated upon severe straining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. G. He, J. Eckert, W. Löser, and L. Schultz: Novel Ti based nanostructure–dendrite composites with enhanced plasticity. Nat. Mater. 2, 33 (2003).

    Article  CAS  Google Scholar 

  2. J. Eckert, J. Das, S. Pauly, and C. Duhamel: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).

    Article  CAS  Google Scholar 

  3. L.C. Zhang, J. Das, H.B. Lu, C. Duhamel, M. Calin, and J. Eckert: High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scr. Mater. 57, 101 (2007).

    Article  CAS  Google Scholar 

  4. T. Maity, B. Roy, and J. Das: Mechanism of lamellae deformation and phase rearrangement in ultrafine lamellar β-Ti/FeTi eutectic composites. Acta Mater. 97, 170 (2015).

    Article  CAS  Google Scholar 

  5. L.C. Zhang, H.B. Lu, C. Mickel, and J. Eckert: Ductile ultrafine-grained Ti-based alloys with high yield strength. Appl. Phys. Lett. 91, 051906 (2007).

    Article  CAS  Google Scholar 

  6. J. Das, K.B. Kim, F. Baier, W. Löser, and J. Eckert: High-strength Ti-base ultrafine eutectic with enhanced ductility. Appl. Phys. Lett. 87, 161907 (2005).

    Article  CAS  Google Scholar 

  7. T. Maity and J. Das: High strength Ni–Zr–(Al) nano/-eutectic composites with large plasticity. Intermetallics 63, 51 (2015).

    Article  CAS  Google Scholar 

  8. T. Maity, A. Singh, A. Dutta, and J. Das: Microstructure mechanism on the evolution of plasticity in nanolamellar γ-Ni/Ni5Zr eutectic composites. Mater. Sci. Eng., A 666, 72 (2016).

    Article  CAS  Google Scholar 

  9. S.W. Lee, J.T. Kim, S.H. Hong, H.J. Park, J.Y. Park, N.S. Lee, Y. Seo, J.Y. Suh, J. Eckert, D.H. Kim, J.M. Park, and K.B. Kim: Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composites. Sci. Rep. 4, 6500 (2014).

    Article  CAS  Google Scholar 

  10. T. Maity, A. Dutta, P.P. Jana, K.G. Prashanth, J. Eckert, and J. Das: Influence of Nb on the microstructure and fracture toughness of (Zr0.76Fe0.24)100−xNbx nanoeutectic composites. Materials 11, 113 (2018).

    Article  CAS  Google Scholar 

  11. J.T. Kim, S.H. Hong, H.J. Park, G.H. Park, J.Y. Suh, J.M. Park, and K.B. Kim: Influence of microstructural evolution on mechanical behavior of Fe–Nb–B ultrafine composites with a correlation to elastic modulus and hardness. J. Alloys Compd. 647, 886 (2015).

    Article  CAS  Google Scholar 

  12. J.T. Kim, S.H. Hong, H.J. Park, Y.S. Kim, J.Y. Suh, J.K. Lee, J.M. Park, T. Maity, J. Eckert, and K.B. Kim: Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co–Cr–Mo–(Cu) ultrafine eutectic alloys. Sci. Rep. 7, 39959 (2017).

    Article  CAS  Google Scholar 

  13. J.T. Kim, S.H. Hong, H.J. Park, Y.S. Kim, G.H. Park, J. Park, N. Lee, Y. Seo, J.M. Park, and K.B. Kim: Improving the plasticity and strength of Fe–Nb–B ultrafine eutectic composite. Mater. Des. 76, 190 (2015).

    Article  CAS  Google Scholar 

  14. C. Yang, L.M. Kang, X.X. Li, W.W. Zhang, D.T. Zhang, Z.Q. Fu, Y.Y. Li, L.C. Zhang, and E.J. Lavernia: Bimodal titanium alloys with ultrafine lamellar eutectic structure fabricated by semi-solid sintering. Acta Mater. 132, 491 (2017).

    Article  CAS  Google Scholar 

  15. L.H. Liu, C. Yang, F. Wang, S.G. Qu, X.Q. Li, W.W. Zhang, Y.Y. Li, and L.C. Zhang: Ultrafine grained Ti-based composites with ultrahigh strength and ductility achieved by equiaxing microstructure. Mater. Des. 79, 1 (2015).

    Article  CAS  Google Scholar 

  16. Y. Lu, Y. Dong, S. Guo, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).

    Article  CAS  Google Scholar 

  17. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang: High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer International Publishing, Cham, Switzerland, 2016).

    Book  Google Scholar 

  18. F. He, Z. Wang, P. Cheng, J. Li, Y. Dang, J. Wang, and C.T. Liu: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).

    Article  CAS  Google Scholar 

  19. Y. Dong, L. Jiang, H. Jiang, Y. Lu, T. Wang, and T. Li: Effect of annealing treatment on microstructure and hardness of bulk AlCrFeNiMo0.2 eutectic high entropy alloy. Mater. Des. 82, 91 (2015).

    Article  CAS  Google Scholar 

  20. M.H. Tsai, A.C. Fan, and H.A. Wang: Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNix high-entropy alloys. J. Alloys Compd. 695, 1479 (2017).

    Article  CAS  Google Scholar 

  21. F. He, Z. Wang, M. Zhu, J. Li, Y. Dang, and J. Wang: The phase stability of Ni2CrFeMox multi-principal-component alloys with medium configurational entropy. Mater. Des. 85, 1 (2015).

    Article  CAS  Google Scholar 

  22. F. He, Z. Wang, X. Shang, C. Leng, J. Li, and J. Wang: Stability of lamellar structures in Co–Cr–Fe–Ni–Nbx eutectic high entropy alloys at elevated temperatures. Mater. Des. 104, 259 (2016).

    Article  CAS  Google Scholar 

  23. T. Maity, K.G. Prashanth, O. Balci, Z. Wang, Y.D. Jia, and J. Eckert: Plastic defamation mechanisms in severely strained eutectic high entropy composites explained via strain rate sensitivity and activation volume. Composites, Part B 150, 7 (2018).

    Article  CAS  Google Scholar 

  24. T. Maity, K.G. Prashanth, O. Balci, J.T. Kim, T. Schöberl, Z. Wang, and J. Eckert: Influence of severe straining and strain rate on the evolution of dislocation structure during micro-/nanoindentation in high entropy lamellar eutectics. Int. J. Plast. 109, 121 (2018).

    Article  CAS  Google Scholar 

  25. T.S. Reddy, I.S. Wani, T. Bhattacharjee, S.R. Reddy, R. Saha, and P.P. Bhattacharjee: Severe plastic deformation driven nanostructure and phase evolution in a Al0.5CoCrFeNi dual phase high entropy alloy. Intermetallics 91, 150 (2017).

    Article  CAS  Google Scholar 

  26. Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, and T. Li: Directly cast bulk eutectic and near eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).

    Article  CAS  Google Scholar 

  27. I.S. Wani, T. Bhattacharjee, S. Sheikh, P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, and N. Tsuji: Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater. Res. Lett. 4, 174 (2016).

    Article  CAS  Google Scholar 

  28. L. Rogal, J. Morgiel, Z. Swiatek, and F. Czerwinski: Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy. Mater. Sci. Eng., A 651, 590–597 (2016).

    Article  CAS  Google Scholar 

  29. H. Jiang, H. Zhang, T. Huang, Y. Lu, T. Wang, and T. Li: Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Mater. Des. 109, 539 (2016).

    Article  CAS  Google Scholar 

  30. L. Jiang, Y. Lu, W. Wu, Z. Cao, and T. Li: Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions. J. Mater. Sci. Technol. 32, 245 (2016).

    Article  CAS  Google Scholar 

  31. Y. Tan, J. Li, J. Wang, and H. Kou: Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy. Intermetallics 85, 74 (2017).

    Article  CAS  Google Scholar 

  32. Z.Y. Ding, Q.F. He, Q. Wang, and Y. Yang: Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites. Int. J. Plast. 106, 57 (2018).

    Article  CAS  Google Scholar 

  33. S. Sasmal, M.R. Rahul, R.S. Kottada, and G. Phanikumar: Hot deformation behavior and processing map of Co–Cu–Fe–Ni–Ti eutectic high entropy alloy. Mater. Sci. Eng., A 664, 227 (2016).

    Article  CAS  Google Scholar 

  34. T.M. Pollock and S. Tin: Nickel based super-alloys for advanced turbine engines: Chemistry, microstructure, and properties. J. Propul. Power 22, 361 (2006).

    Article  CAS  Google Scholar 

  35. S.R. Dey, L. Hollang, B. Beausir, E. Hieckmann, and W. Skrotzki: Formation of micro shear bands during cyclic deformation of sub-microcrystalline nickel. Scr. Mater. 68, 631 (2013).

    Article  CAS  Google Scholar 

  36. M. Böhme and M.F.X. Wagner: On the correlation of shear band formation and texture evolution in α-brass during accumulative roll bonding. Scr. Mater. 154, 172 (2018).

    Article  CAS  Google Scholar 

  37. J.P. Ligda, B.E. Schuster, and Q. Wei: Transition in the deformation mode of nanocrystalline tantalum processed by high pressure torsion. Scr. Mater. 67, 253 (2012).

    Article  CAS  Google Scholar 

  38. Q. Wie, D. Jia, K.T. Ramesh, and E. Ma: Evolution and microstructure of shear bands in nanostructured Fe. Appl. Phys. Lett. 81, 1240 (2002).

    Article  CAS  Google Scholar 

  39. T. Hebesberger, H.P. Stüwe, A. Vorhauer, F. Wetscher, and R. Pippan: Structure of copper deformed by high pressure torsion. Acta Mater. 53, 393 (2005).

    Article  CAS  Google Scholar 

  40. M. Hafok and R. Pippan: Post-shear deformation of high pressure torsion-deformed nickel under hydrostatic pressure. Scr. Mater. 56, 757 (2007).

    Article  CAS  Google Scholar 

  41. F. Wetscher, A. Vorhauer, and R. Pippan: Strain hardening during high pressure torsion deformation. Mater. Sci. Eng., A 410–411, 213 (2005).

    Article  CAS  Google Scholar 

  42. M.G. Zelin, N.A. Krasilnikov, R.Z. Valiev, M.W. Grabski, H.S. Yang, and A.K. Mukherjee: On the microstructural aspects of the nonhomogeneity of superplastic deformation at the level of grain groups. Acta Metall. 42, 119 (1994).

    Article  CAS  Google Scholar 

  43. S.D. Wu, Z.G. Wang, C.B. Jiang, and G.Y. Li: Scanning electron microscopy-electron channeling contrast investigation of recrystallization during cyclic deformation of ultrafine grained copper processed by equal channel angular pressing. Philos. Mag. Lett. 82, 559 (2002).

    Article  CAS  Google Scholar 

  44. A. Vorhauer and R. Pippan: On the homogeneity of deformation by high pressure torsion. Scr. Mater. 51, 921 (2004).

    Article  CAS  Google Scholar 

  45. K.S. Kormut, P. Ghosh, A. Bachmaier, A. Hohenwarter, and R. Pippan: Effect of processing temperature on the microstructural characteristics of Cu–Ag nanocomposites: From super saturation to complete phase decomposition. Acta Mater. 154, 33 (2018).

    Article  CAS  Google Scholar 

  46. J.T. Kim, S.H. Hong, J.M. Park, J. Eckert, and K.B. Kim: Microstructure and mechanical properties of hierarchical multi-phase composites based on Al–Ni-type intermetallic compounds in the Al–Ni–Cu–Si alloys system. J. Alloys Compd. 749, 205 (2018).

    Article  CAS  Google Scholar 

  47. Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Microstructural evolution and mechanical properties of a two phase Cu–Ag alloy processed by high-pressure torsion to ultrahigh strains. Acta Mater. 59, 2783 (2011).

    Article  CAS  Google Scholar 

  48. D. Chicot: Hardness length-scale factor to model nano- and micro-indentation size effects. Mater. Sci. Eng., A 499, 454 (2009).

    Article  CAS  Google Scholar 

  49. M. Tanaka, H. Saito, M. Yasumaru, and K. Hagishida: Nature of delamination cracks in perlitic steels. Scr. Mater. 112, 32 (2016).

    Article  CAS  Google Scholar 

  50. Y.B. Xu, W.L. Zhong, Y.J. Chen, L.T. Shen, Q. Liu, Y.L. Bai, and M.A. Meyers: Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy. Mater. Sci. Eng., A 299, 287 (2001).

    Article  Google Scholar 

  51. G.J. Fan, G.Y. Wang, H. Choo, P.K. Liaw, Y.S. Park, B.Q. Han, and E.J. Lavernia: Deformation behaviour of an ultrafine-grained Al–Mg alloy at different strain rates. Scr. Mater. 52, 929 (2005).

    Article  CAS  Google Scholar 

  52. T.W. Wright and H. Ockendon: A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int. J. Plast. 12, 927 (1996).

    Article  Google Scholar 

  53. A.M. Mayer, V.F. Nesterenko, J.C. Lasalvia, and Q. Xue: Shear localization in dynamic deformation of materials: Microstructural evolution and self-organization. Mater. Sci. Eng., A 317, 204 (2001).

    Article  Google Scholar 

  54. M. Kapp, O. Renk, T. Leitner, P. Ghosh, B. Yang, and R. Pippan: Cyclic induced grain growth within shear bands investigated in UFG Ni by cyclic high pressure torsion. J. Mater. Res. 32, 4317 (2017).

    Article  CAS  Google Scholar 

  55. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier: Saturation of fragmentation during severe plastic deformation. Annu. Rev. Mater. Res. 40, 319 (2010).

    Article  CAS  Google Scholar 

  56. F.X. Li, P.D. Hao, J.H. Yi, Z. Chen, K.G. Prashanth, T. Maity, and J. Eckert: Microstructure and strength of nano-/ultrafine-grain carbon nanotube-reinforced titanium composites processed by high pressure torsion. Mater. Sci. Eng., A 722, 122 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. R. Pippan, T. Hohenwarter, P. Kutlesa, and S. Modritsch for their help with high-pressure torsion experiments and metallographic sample preparation, respectively. Financial support was provided through the European Research Council under the ERC Advanced Grant INTELHYB (grant ERC-2013-ADG-340025) and Estonian Research Council under the structural funds MOBERC15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konda Gokuldoss Prashanth.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, T., Prashanth, K.G., Janda, A. et al. Mechanism of high-pressure torsion-induced shear banding and lamellar thickness saturation in Co–Cr–Fe–Ni–Nb high-entropy composites. Journal of Materials Research 34, 2672–2682 (2019). https://doi.org/10.1557/jmr.2019.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.149

Navigation