Skip to main content
Log in

Revealing deformation mechanisms in Mg–Y alloy by in situ deformation of nano-pillars with mediated lateral stiffness

  • Article
  • Plasticity and Fracture at the Nanoscales
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In our previous study, we observed a lack of \(\left\{ {10\bar 12} \right\}\) twinning in a deformed Mg–Y alloy, which contributed to the observed yield “symmetry.” However, the effects of texture and grain size on polycrystalline deformation made it difficult to fully understand why twinning was not active. Therefore, we report herein in-depth study by in situ transmission electron microscopy, i.e., in situ TEM. The in situ deformation of nano-sized Mg–Y pillars revealed that prismatic slip was favored over twinning, namely, the critical stress required to activate prismatic slip was lower than that for twinning. This finding diametrically differs from that reported in other nano/micro-pillar deformation studies, where twinning is always the dominant deformation mechanism. By measuring the critical stresses for basal, prismatic, and pyramidal slip systems, this in situ TEM study also sheds light on the effects of the alloying element Y on reducing the intrinsic plastic anisotropy in the Mg matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. H. El Kadiri, C.D. Barrett, J. Wang, and C.N. Tomé: Why are twins profuse in magnesium? Acta Mater. 85, 354 (2015).

    Article  CAS  Google Scholar 

  2. M.H. Yoo: Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Mater. Trans. A 12, 409 (1981).

    Article  CAS  Google Scholar 

  3. T. Mayama, K. Aizawa, Y. Tadano, and M. Kuroda: Influence of twinning deformation and lattice rotation on strength differential effect in polycrystalline pure magnesium with rolling texture. Comput. Mater. Sci. 47, 448 (2009).

    Article  CAS  Google Scholar 

  4. Y. Chino, M. Kado, and M. Mabuchi: Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2 wt% (0.035 at.%) Ce. Mater. Sci. Eng., A 494, 343 (2008).

    Article  CAS  Google Scholar 

  5. J. Hirsch and T. Al-Samman: Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61, 818 (2013).

    Article  CAS  Google Scholar 

  6. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52, 5093 (2004).

    Article  CAS  Google Scholar 

  7. A. Ghaderi and M.R. Barnett: Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater. 59, 7824 (2011).

    Article  CAS  Google Scholar 

  8. S.K. Panigrahi, K. Kumar, N. Kumar, W. Yuan, R.S. Mishra, R. DeLorme, B. Davis, R.A. Howell, and K. Cho: Transition of deformation behavior in an ultrafine grained magnesium alloy. Materials Science and Engineering: Mater. Sci. Eng., A 549, 123 (2012).

    Article  CAS  Google Scholar 

  9. W.T. Lee, Y.W. Chou, C.I. Hsiao, C.P. Chang, L. Chang, and P.W. Kao: Compression along the easy-glide orientation of ultrafine and fine-grained Mg–3Al–1Zn alloy. Metall. Mater. Trans. A 41, 3282 (2010).

    Article  CAS  Google Scholar 

  10. H.J. Choi, Y. Kim, J.H. Shin, and D.H. Bae: Deformation behavior of magnesium in the grain size spectrum from nano- to micrometer. Materials Science and Engineering: Mater. Sci. Eng., A 527, 1565 (2010).

    Article  CAS  Google Scholar 

  11. U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, and C.W. Lee: Grain structure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater. 57, 5406 (2009).

    Article  CAS  Google Scholar 

  12. R.S. Mishra and Z.Y. Ma: Friction stir welding and processing. Mater. Sci. Eng., R 50, 1 (2005).

    Article  CAS  Google Scholar 

  13. S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, and R. Gonzalez-Martinez: On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys. Acta Mater. 59, 429 (2011).

    Article  CAS  Google Scholar 

  14. S. Sandlöbes, Z. Pei, M. Friák, L.F. Zhu, F. Wang, S. Zaefferer, D. Raabe, and J. Neugebauer: Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties. Acta Mater. 70, 92 (2014).

    Article  CAS  Google Scholar 

  15. N. Stanford, R.K.W. Marceau, and M.R. Barnett: The effect of high yttrium solute concentration on the twinning behaviour of magnesium alloys. Acta Mater. 82, 447 (2015).

    Article  CAS  Google Scholar 

  16. N. Stanford, R. Cottam, B. Davis, and J. Robson: Evaluating the effect of yttrium as a solute strengthener in magnesium using in situ neutron diffraction. Acta Mater. 78, 1 (2014).

    Article  CAS  Google Scholar 

  17. L. Tang, W. Liu, Z. Ding, D. Zhang, Y. Zhao, E.J. Lavernia, and Y. Zhu: Alloying Mg with Gd and Y: Increasing both plasticity and strength. Comput. Mater. Sci. 115, 85 (2016).

    Article  CAS  Google Scholar 

  18. D. Zhang, L. Jiang, J.M. Schoenung, S. Mahajan, and E.J. Lavernia: TEM study on relationship between stacking faults and non-basal dislocations in Mg. Philos. Mag., 1 (2015).

    Google Scholar 

  19. J.A. Yasi, L.G. Hector, Jr., and D.R. Trinkle: Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model. Acta Mater. 60, 2350 (2012).

    Article  CAS  Google Scholar 

  20. J.A. Yasi, L.G. Hector, Jr., and D.R. Trinkle: First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties. Acta Mater. 58, 5704 (2010).

    Article  CAS  Google Scholar 

  21. D. Zhang, H. Wen, M.A. Kumar, F. Chen, L. Zhang, I.J. Beyerlein, J.M. Schoenung, S. Mahajan, and E.J. Lavernia: Yield symmetry and reduced strength differential in Mg–2.5Y alloy. Acta Mater. 120, 75 (2016).

    Article  CAS  Google Scholar 

  22. Q. Yu, M. Legros, and A.M. Minor: In situ TEM nanomechanics. MRS Bull. 40, 62 (2015).

    Article  Google Scholar 

  23. M. Legros: In situ mechanical TEM: Seeing and measuring under stress with electrons. C. R. Phys. 15, 224 (2014).

    Article  CAS  Google Scholar 

  24. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).

    Article  CAS  Google Scholar 

  25. K.Y. Xie, S. Shrestha, Y. Cao, P.J. Felfer, Y. Wang, X. Liao, J.M. Cairney, and S.P. Ringer: The effect of pre-existing defects on the strength and deformation behavior of α-Fe nanopillars. Acta Mater. 61, 439 (2013).

    Article  CAS  Google Scholar 

  26. Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, and A.M. Minor: The nanostructured origin of deformation twinning. Nano Lett. 12, 887 (2012).

    CAS  Google Scholar 

  27. J. Ye, R.K. Mishra, A.K. Sachdev, and A.M. Minor: In situ TEM compression testing of Mg and Mg–0.2 wt% Ce single crystals. Scr. Mater. 64, 292 (2011).

    Article  CAS  Google Scholar 

  28. B.Y. Liu, J. Wang, B. Li, L. Lu, X.Y. Zhang, Z.W. Shan, J. Li, C.L. Jia, J. Sun, and E. Ma: Twinning-like lattice reorientation without a crystallographic twinning plane. Nat. Commun. 5 (2014).

  29. E. Lilleodden: Microcompression study of Mg(0001) single crystal. Scr. Mater. 62, 532 (2010).

    Article  CAS  Google Scholar 

  30. C.M. Byer, B. Li, B. Cao, and K.T. Ramesh: Microcompression of single-crystal magnesium. Scr. Mater. 62, 536 (2010).

    Article  CAS  Google Scholar 

  31. Z.H. Aitken, H. Fan, J.A. El-Awady, and J.R. Greer: The effect of size, orientation and alloying on the deformation of AZ31 nanopillars. J. Mech. Phys. Solids 76, 208 (2015).

    Article  CAS  Google Scholar 

  32. C. Zhou, I.J. Beyerlein, and R. LeSar: Plastic deformation mechanisms of fcc single crystals at small scales. Acta Mater. 59, 7673 (2011).

    Article  CAS  Google Scholar 

  33. C. Zhou, S.B. Biner, and R. LeSar: Discrete dislocation dynamics simulations of plasticity at small scales. Acta Mater. 58, 1565 (2010).

    Article  CAS  Google Scholar 

  34. Q. Yu, L. Qi, R.K. Mishra, J. Li, and A.M. Minor: Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale. Proc. Natl. Acad. Sci. U. S. A. 110, 13289 (2013).

    Article  CAS  Google Scholar 

  35. J. Wang and N. Stanford: Investigation of precipitate hardening of slip and twinning in Mg5% Zn by micropillar compression. Acta Mater. 100, 53 (2015).

    Article  CAS  Google Scholar 

  36. A.T. Jennings, M.J. Burek, and J.R. Greer: Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).

    Article  CAS  Google Scholar 

  37. P.G. Partridge: The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 12, 169 (1967).

    Article  CAS  Google Scholar 

  38. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51, 2055 (2003).

    Article  CAS  Google Scholar 

  39. C.M. Byer and K.T. Ramesh: Effects of the initial dislocation density on size effects in single-crystal magnesium. Acta Mater. 61, 3808 (2013).

    Article  CAS  Google Scholar 

  40. K.Y. Xie, Z. Alam, A. Caffee, and K.J. Hemker: Pyramidal I slip in c-axis compressed Mg single crystals. Scr. Mater. 112, 75 (2016).

    Article  CAS  Google Scholar 

  41. B-Y. Liu, L. Wan, J. Wang, E. Ma, and Z-W. Shan: Terrace-like morphology of the boundary created through basal-prismatic transformation in magnesium. Scr. Mater. 100, 86 (2015).

    Article  CAS  Google Scholar 

  42. I.J. Beyerlein, R.J. McCabe, and C.N. Tomé: Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study. J. Mech. Phys. Solids 59, 988 (2011).

    Article  CAS  Google Scholar 

  43. S.R. Niezgoda, A.K. Kanjarla, I.J. Beyerlein, and C.N. Tomé: Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close-packed metals. Int. J. Plast. 56, 119 (2014).

    Article  CAS  Google Scholar 

  44. D Zhang B Zheng Y Zhou S Mahajan EJ Lavernia (2014) ArticleTitlePrism stacking faults observed contiguous to a \(\left\{ {10\bar 12} \right\}\) twin in a Mg–Y alloy Scr. Mater. 76 61 Occurrence Handle1:CAS:528:DC%2BC2cXhtleqtrg%3D Occurrence Handle10.1016/j.scriptamat.2013.12.015

    Article  CAS  Google Scholar 

  45. J Jeong M Alfreider R Konetschnik D Kiener SH Oh (2018) ArticleTitleIn situ TEM observation of \(\left\{ {10\bar 12} \right\}\) twin-dominated deformation of Mg pillars: Twinning mechanism, size effects and rate dependency Acta Mater. 158 407 Occurrence Handle1:CAS:528:DC%2BC1cXhsVyntbnL Occurrence Handle10.1016/j.actamat.2018.07.027

    Article  CAS  Google Scholar 

  46. K-H. Kim, J.B. Jeon, N.J. Kim, and B-J. Lee: Role of yttrium in activation of 〈c + a〉 slip in magnesium: An atomistic approach. Scr. Mater. 108, 104 (2015).

    Article  CAS  Google Scholar 

  47. Z. Pei, L.F. Zhu, M. Friak, S. Sandlobes, J. von Pezold, H.W. Sheng, C.P. Race, S. Zaefferer, B. Svendsen, D. Raabe, and J. Neugebauer: Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg–Y alloys. New J. Phys. 15, 043020 (2013).

    Article  CAS  Google Scholar 

  48. J.A. El-Awady: Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6 (2015).

  49. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle: Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56, 313 (2007).

    Article  CAS  Google Scholar 

  50. B. Girault, A.S. Schneider, C.P. Frick, and E. Arzt: Strength effects in micropillars of a dispersion strengthened superalloy. Adv. Eng. Mater. 12, 385 (2010).

    Article  CAS  Google Scholar 

  51. J.F. Nie, N.C. Wilson, Y.M. Zhu, and Z. Xu: Solute clusters and GP zones in binary Mg–RE alloys. Acta Mater. 106, 260 (2016).

    Article  CAS  Google Scholar 

  52. Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).

    Article  CAS  Google Scholar 

  53. Q. Yu, Z.W. Shan, J. Li, X.X. Huang, L. Xiao, J. Sun, and E. Ma: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).

    Article  CAS  Google Scholar 

  54. Q. Yu, J. Sun, J.W. Morris, Jr., and A.M. Minor: Source mechanism of non-basal 〈c + a〉 slip in Ti alloy. Scr. Mater. 69, 57 (2013).

    Article  CAS  Google Scholar 

  55. J. Ye, R.K. Mishra, and A.M. Minor: Relating nanoscale plasticity to bulk ductility in aluminum alloys. Scr. Mater. 59, 951 (2008).

    Article  CAS  Google Scholar 

  56. J. Ye, R.K. Mishra, A.R. Pelton, and A.M. Minor: Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater. 58, 490 (2010).

    Article  CAS  Google Scholar 

  57. E. Husser, E. Lilleodden, and S. Bargmann: Computational modeling of intrinsically induced strain gradients during compression of c-axis-oriented magnesium single crystal. Acta Mater. 71, 206 (2014).

    Article  CAS  Google Scholar 

  58. M. Kuroda: Higher-order gradient effects in micropillar compression. Acta Mater. 61, 2283 (2013).

    Article  CAS  Google Scholar 

  59. B. Daum, G. Dehm, H. Clemens, M. Rester, F.D. Fischer, and F.G. Rammerstorfer: Elastoplastic buckling as source of misinterpretation of micropillar tests. Acta Mater. 61, 4996 (2013).

    Article  CAS  Google Scholar 

  60. C. Kirchlechner, J. Keckes, C. Motz, W. Grosinger, M.W. Kapp, J.S. Micha, O. Ulrich, and G. Dehm: Impact of instrumental constraints and imperfections on the dislocation structure in micron-sized Cu compression pillars. Acta Mater. 59, 5618 (2011).

    Article  CAS  Google Scholar 

  61. M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).

    Article  CAS  Google Scholar 

  62. P.A. Shade, R. Wheeler, Y.S. Choi, M.D. Uchic, D.M. Dimiduk, and H.L. Fraser: A combined experimental and simulation study to examine lateral constraint effects on microcompression of single-slip oriented single crystals. Acta Mater. 57, 4580 (2009).

    Article  CAS  Google Scholar 

  63. D. Kiener, C. Motz, and G. Dehm: Micro-compression testing: A critical discussion of experimental constraints. Materials Science and Engineering: Mater. Sci. Eng., A 505, 79 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF CMMI-1437327) and 111 Project of China (No. B13035). The authors also acknowledge the support from the Molecular Foundry, which is funded by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. Experimental assistance from Mr. John Turner and Dr. Joshua Kacher is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique J. Lavernia.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Jiang, L., Wang, X. et al. Revealing deformation mechanisms in Mg–Y alloy by in situ deformation of nano-pillars with mediated lateral stiffness. Journal of Materials Research 34, 1542–1554 (2019). https://doi.org/10.1557/jmr.2019.124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.124

Navigation