Skip to main content
Log in

A structural, morphological, linear, and nonlinear optical spectroscopic studies of nanostructured Al-doped ZnO thin films: An effect of Al concentrations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sol–gel spin coating is applied to fabricate the pure and different concentrations of aluminum (Al)-doped ZnO films on high-quality silicon substrates. All films are showing high crystallinity in X-ray diffraction study, and lattice constants were obtained using PowderX software. The value of crystallite size was found in range of 20–40 nm. EDX/SEM mapping was performed for 2 wt% Al-doped ZnO film, which shows the presence of Al and its homogeneous distribution in the film. SEM investigation shows nanorods morphology all over the surface of films, and the dimension of nanorods is found to increase with Al doping. The E(g)dire. values were estimate in range of 3.25–3.29 eV for all films. Linear refractive index was found in range of 1.5–2.75. The χ1 value is found in range of 0.13–1.4 for all films. The χ3 values are found in range of 0.0053 × 10−10 to 6.24 × 10−10 esu for pure and doped films. The n2 values were also estimated. These studies clearly showed that the properties of ZnO have been enriched by Al doping, and hence doped films are more appropriate for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Similar content being viewed by others

References

  1. G. El Hallani, S. Nasih, N. Fazouan, A. Liba, M. Khuili, M. Sajieddine, M. Mabrouki, L. Laanab, and E. Atmani: Comparative study for highly Al and Mg doped ZnO thin films elaborated by sol gel method for photovoltaic application. J. Appl. Phys. 121, 135103 (2017).

    Article  CAS  Google Scholar 

  2. S-H. Lee, S-H. Han, H.S. Jung, H. Shin, J. Lee, J-H. Noh, S. Lee, I-S. Cho, J-K. Lee, and J. Kim: Al-doped ZnO thin film: A new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells. J. Phys. Chem. C 114, 7185 (2010).

    Article  CAS  Google Scholar 

  3. B. Gupta, A. Jain, and R. Mehra: Development and characterization of sol–gel derived Al doped ZnO/p-Si photodiode. J. Mater. Sci. Technol. 26, 223 (2010).

    Article  CAS  Google Scholar 

  4. J. Ghosh, R. Ghosh, and P. Giri: Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sens. Actuators, B 254, 681 (2018).

    Article  CAS  Google Scholar 

  5. A. Gupta and A.D. Compaan: All-sputtered 14% CdS∕ CdTe thin-film solar cell with ZnO: Al transparent conducting oxide. Appl. Phys. Lett. 85, 684 (2004).

    Article  CAS  Google Scholar 

  6. V. Gupta and A. Mansingh: Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 80, 1063 (1996).

    Article  CAS  Google Scholar 

  7. Z.R. Khan, M. Arif, and A. Singh: Development and study of the structural and optical properties of hexagonal ZnO nanocrystals. Int. Nano Lett. 2, 22 (2012).

    Article  CAS  Google Scholar 

  8. J. Cui: Zinc oxide nanowires. Mater. Charact. 64, 43 (2012).

    Article  CAS  Google Scholar 

  9. J. Fan, T. Li, and H. Heng: Hydrothermal growth and optical properties of ZnO nanoflowers. Mater. Res. Express 1, 045024 (2014).

    Article  CAS  Google Scholar 

  10. S. Vempati, J. Mitra, and P. Dawson: One-step synthesis of ZnO nanosheets: A blue-white fluorophore. Nanoscale Res. Lett. 7, 470 (2012).

    Article  Google Scholar 

  11. A. Zawadzka, P. Płóciennik, Y. El Kouari, H. Bougharraf, and B. Sahraoui: Linear and nonlinear optical properties of ZnO thin films deposited by pulsed laser deposition. J. Lumin. 169, 483 (2016).

    Article  CAS  Google Scholar 

  12. M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, S.R. Maidur, P.S. Patil, I.S. Yahia, H. Algarni, and S. AlFaify: Linear, third order nonlinear and optical limiting studies on MZO/FTO thin film system fabricated by spin coating technique for electro-optic applications. J. Mater. Res. 33, 3880–3889 (2018).

    Article  CAS  Google Scholar 

  13. V. Ganesh, I. Yahia, S. AlFaify, and M. Shkir: Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids 100, 115 (2017).

    Article  CAS  Google Scholar 

  14. S. Benramache, A. Arif, O. Belahssen, and A. Guettaf: Study on the correlation between crystallite size and optical gap energy of doped ZnO thin film. J. Nanostruct. Chem. 3, 80 (2013).

    Article  Google Scholar 

  15. H. Ko, Y. Chen, S. Hong, H. Wenisch, T. Yao, and D.C. Look: Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 77, 3761 (2000).

    Article  CAS  Google Scholar 

  16. P. Sharma, A. Gupta, K. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.O. Guillen, B. Johansson, and G. Gehring: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673 (2003).

    Article  CAS  Google Scholar 

  17. M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, I.S. Yahia, S.R. Maidur, P.S. Patil, and S. AlFaify: Investigation on structural, linear, nonlinear and optical limiting properties of sol–gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375 (2018).

    Article  CAS  Google Scholar 

  18. J. Mass, P. Bhattacharya, and R. Katiyar: Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition. Mater. Sci. Eng., B 103, 9 (2003).

    Article  CAS  Google Scholar 

  19. G. Grinblat, L. Borrero-González, L.A.d.O. Nunes, M. Tirado, and D. Comedi: Enhanced optical properties and (Zn, Mg) interdiffusion in vapour transport grown ZnO/MgO core/shell nanowires. Nanotechnology 25, 035705 (2013).

    Article  Google Scholar 

  20. B.K. Sharma and N. Khare: Stress-dependent band gap shift and quenching of defects in Al-doped ZnO films. J. Phys. D: Appl. Phys. 43, 465402 (2010).

    Article  CAS  Google Scholar 

  21. B. Shrisha, S. Bhat, D. Kushavah, and K.G. Naik: Hydrothermal growth and characterization of Al-doped ZnO nanorods. Mater. Today 3, 1693 (2016).

    Google Scholar 

  22. M. Ebrahimizadeh Abrishami and M. Soleimani Varaki: Novel laser-assisted technique for rapid preparing ZnO: X nanoparticles. J. Laser Appl. 27, 042007 (2015).

    Article  CAS  Google Scholar 

  23. F. Paraguay D, W. Estrada L, D.R. Acosta N, E. Andrade, and M. Miki-Yoshida: Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 350, 192 (1999).

    Article  CAS  Google Scholar 

  24. M. Maache, T. Devers, and A. Chala: Al-doped and pure ZnO thin films elaborated by sol–gel spin coating process for optoelectronic applications. Semiconductors 51, 1604 (2017).

    Article  CAS  Google Scholar 

  25. D.J. Edison, W. Nirmala, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, and S. AlFaify: Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications. Phys. B 523, 31 (2017).

    Article  CAS  Google Scholar 

  26. Z. Sofiani, B. Sahraoui, M. Addou, R. Adhiri, M.A. Lamrani, L. Dghoughi, N. Fellahi, B. Derkowska, and W. Bala: Third harmonic generation in undoped and X doped ZnO films (X: Ce, F, Er, Al, Sn) deposited by spray pyrolysis. J. Appl. Phys. 101, 063104 (2007).

    Article  CAS  Google Scholar 

  27. K. Nagaraja, S. Pramodini, A.S. Kumar, H. Nagaraja, P. Poornesh, and D. Kekuda: Third-order nonlinear optical properties of Mn doped ZnO thin films under cw laser illumination. Opt. Mater. 35, 431 (2013).

    Article  CAS  Google Scholar 

  28. P. Scherrer: Göttinger nachrichten math. Physics 2, 98 (1918).

    Google Scholar 

  29. M. Shakir, S. Kushwaha, K. Maurya, G. Bhagavannarayana, and M. Wahab: Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149, 2047 (2009).

    Article  CAS  Google Scholar 

  30. M. Shakir, B. Singh, R. Gaur, B. Kumar, G. Bhagavannarayana, and M. Wahab: Dielectric behaviour and ac electrical conductivity analysis of ZnSe chalcogenide nanoparticles. Chalcogenide Lett. 6, 655 (2009).

    CAS  Google Scholar 

  31. S. Mohd, Z.R. Khan, M.S. Hamdy, H. Algarni, and S. AlFaify: A facile microwave-assisted synthesis of PbMoO 4 nanoparticles and their key characteristics analysis: A good contender for photocatalytic applications. Mater. Res. Express 5, 095032 (2018).

    Article  CAS  Google Scholar 

  32. M. Shkir, I.S. Yahia, V. Ganesh, Y. Bitla, I.M. Ashraf, A. Kaushik, and S. AlFaify: A facile synthesis of Au-nanoparticles decorated PbI2 single crystalline nanosheets for optoelectronic device applications. Sci. Rep. 8, 13806 (2018).

    Article  CAS  Google Scholar 

  33. M. Shkir and S. AlFaify: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017).

    Article  CAS  Google Scholar 

  34. I.S. Yahia, M. Shkir, S. AlFaify, V. Ganesh, H.Y. Zahran, and M. Kilany: Facile microwave-assisted synthesis of Te-doped hydroxyapatite nanorods and nanosheets and their characterizations for bone cement applications. Mater. Sci. Eng., C 72, 472 (2017).

    Article  CAS  Google Scholar 

  35. M. Shkir, I.S. Yahia, M. Kilany, M.M. Abutalib, S. AlFaify, and R. Darwish: Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. 45, 50 (2019).

    Article  CAS  Google Scholar 

  36. M. Shkir, M. Kilany, and I.S. Yahia: Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: A systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram. Int. 43, 14923 (2017).

    Article  CAS  Google Scholar 

  37. X. Wei, B. Man, M. Liu, C. Xue, H. Zhuang, and C. Yang: Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Phys. B 388, 145 (2007).

    Article  CAS  Google Scholar 

  38. S.B. Yahia, L. Znaidi, A. Kanaev, and J. Petitet: Raman study of oriented ZnO thin films deposited by sol–gel method. Spectrochim. Acta, Part A 71, 1234 (2008).

    Article  CAS  Google Scholar 

  39. J. Jaffe, R. Pandey, and A. Kunz: Electronic structure of the rocksalt-structure semiconductors ZnO and CdO. Phys. Rev. B 43, 14030 (1991).

    Article  CAS  Google Scholar 

  40. O. Dulub, L.A. Boatner, and U. Diebold: STM study of the geometric and electronic structure of ZnO(0001)–Zn, \((000\bar 1) - {\rm{O}}\), \((00\bar 10)\), and \((00\bar 20)\) surfaces. Surf. Sci. 519, 201 (2002).

    Article  CAS  Google Scholar 

  41. N. Chahmat, A. Haddad, A. Ain-Souya, R. Ganfoudi, N. Attaf, and M. Ghers: Effect of Sn doping on the properties of ZnO thin films prepared by spray pyrolysis. J. Mod. Phys. 3, 1781 (2012).

    Article  CAS  Google Scholar 

  42. S.T. Shishiyanu, T.S. Shishiyanu, and O.I. Lupan: Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens. Actuators, B 107, 379 (2005).

    Article  CAS  Google Scholar 

  43. C-Y. Tsay, H-C. Cheng, Y-T. Tung, W-H. Tuan, and C-K. Lin: Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method. Thin Solid Films 517, 1032 (2008).

    Article  CAS  Google Scholar 

  44. A. Bougrine, A. El Hichou, M. Addou, J. Ebothé, A. Kachouane, and M. Troyon: Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis. Mater. Chem. Phys. 80, 438 (2003).

    Article  CAS  Google Scholar 

  45. M. Miki-Yoshida, J. Morales, and J. Solis: Influence of Al, In, Cu, Fe, and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films 373, 137 (2000).

    Article  Google Scholar 

  46. P. Kubelka and F. Munk: A contribution to the optics of pigments. Z. Tech. Phys. 12, 593 (1931).

    Google Scholar 

  47. M. Shkir: Effect of titan yellow dye on morphological, structural, optical, and dielectric properties of zinc(tris) thiourea sulphate single crystals. J. Mater. Res. 31, 1046 (2016).

    Article  CAS  Google Scholar 

  48. M. Shkir, S. AlFaify, V. Ganesh, I. Yahia, H. Algarni, and H. Shoukry: Brilliant green dye added zinc (tris) thiourea sulphate monocrystal growth with enhanced crystalline perfection, optical, photoluminescence and mechanical properties. J. Mater. Sci.: Mater. Electron. 27, 10673 (2016).

    CAS  Google Scholar 

  49. M. Ajili, M. Castagné, and N.K. Turki: Study on the doping effect of Sn-doped ZnO thin films. Superlattices Microstruct. 53, 213 (2013).

    Article  CAS  Google Scholar 

  50. E. Andrade and M. Miki-Yoshida: Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 350, 192 (1999).

    Article  Google Scholar 

  51. M. Shkir, V. Ganesh, S. AlFaify, I. Yahia, and H. Zahran: Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping. J. Mater. Sci.: Mater. Electron. 29, 6446 (2018).

    CAS  Google Scholar 

  52. R. Ganeev, A. Ryasnyansky, S.R. Kamalov, M. Kodirov, and T. Usmanov: Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals. J. Phys. D: Appl. Phys. 34, 1602 (2001).

    Article  CAS  Google Scholar 

  53. R.W. Boyd: Nonlinear Optics (Academic press, Elsevier Science, San Diego, 2003).

    Google Scholar 

  54. M. Shkir, V. Ganesh, S. AlFaify, and I.S. Yahia: Structural, linear and third order nonlinear optical properties of drop casting deposited high quality nanocrystalline phenol red thin films. J. Mater. Sci.: Mater. Electron. 28, 10573 (2017).

    CAS  Google Scholar 

  55. M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, and M. Hrdlička: Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399 (2003).

    Article  CAS  Google Scholar 

  56. H. Ticha and L. Tichy: Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381 (2002).

    CAS  Google Scholar 

  57. C.C. Wang: Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970).

    Article  Google Scholar 

  58. J. Wynne: Nonlinear optical spectroscopy of χ(3) in LiNbO3. Phys. Rev. Lett. 29, 650 (1972).

    Article  CAS  Google Scholar 

  59. H. Nasu and J.D. Mackenzie: Nonlinear optical properties of glasses and glass or gel-based composites. Opt. Eng. 26, 262102 (1987).

    Article  Google Scholar 

  60. R. Adair, L. Chase, and S.A. Payne: Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337 (1989).

    Article  CAS  Google Scholar 

  61. D. Hanna: Handbook of laser science and technology. J. Mod. Opt. 35, 12 (1988).

    Article  Google Scholar 

  62. V. Ganesh, M. Shkir, S. AlFaify, I.S. Yahia, H.Y. Zahran, and A.F.A. El-Rehim: Study on structural, linear and nonlinear optical properties of spin coated N doped CdO thin films for optoelectronic applications. J. Mol. Struct. 1150 (Suppl. C), 523 (2017).

    Article  CAS  Google Scholar 

  63. T. Chtouki, L. Soumahoro, B. Kulyk, H. Bougharraf, B. Kabouchi, H. Erguig, and B. Sahraoui: Comparison of structural, morphological, linear and nonlinear optical properties of NiO thin films elaborated by spin-coating and spray pyrolysis. Optik 128, 8 (2017).

    Article  CAS  Google Scholar 

  64. N. Srinatha, P. Raghu, H. Mahesh, and B. Angadi: Spin-coated Al-doped ZnO thin films for optical applications: Structural, micro-structural, optical and luminescence studies. J. Alloys Compd. 722, 888 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Department of Science and Technology Ministry of Science and Technology & University Grants Commission, Government of India for the financial support. A.S. would like to thank the Department of Science & Technology, Ministry of Science & Technology, Govt. of India for the award of Young Scientist and BOYCAST Fellowship. The authors from KKU would like to express their appreciation to the Deanship of Scientific Research at the King Khalid University for funding this work through Research Groups Program under Grant No. R.G.P. 2/10/39. Authors are also thankful to Prof. I.S. Yahia, KKU, KSA for help in OC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, M., Shkir, M., AlFaify, S. et al. A structural, morphological, linear, and nonlinear optical spectroscopic studies of nanostructured Al-doped ZnO thin films: An effect of Al concentrations. Journal of Materials Research 34, 1309–1317 (2019). https://doi.org/10.1557/jmr.2018.506

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.506

Navigation