Skip to main content
Log in

Synthesis of nanoscale spherical TiB2 particles in Al matrix by regulating Sc contents

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In situ TiB2 particles with polyhedral or near-spherical morphology with more high-index crystal planes exposed were prepared by controlling the addition amount of Sc in commercial pure aluminum matrix. As the content of Sc increased, TiB2 morphology transformed from hexagonal platelets to polyhedral or near-spherical morphology with a decrease in particle size. In the present paper, a simple method to prepare near-spherical in situ TiB2 particles in Al matrix was explored and it was found that the reinforcement distribution was improved significantly. The different growth mechanism of TiB2 particles in Al and Al–Sc systems was discussed. The key reason for the morphology evolution was that the Sc was preferentially adsorbed on \(\left( {1\bar 212} \right)\) , \(\left( {11\bar 20} \right)\) , and \(\left( {01\bar 11} \right)\) which would inhibit the growth of these faces effectively and retain a lower-energy state of the polyhedral or quasispherical TiB2 particles in Al–Sc systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Y. Han, X. Liu, and X. Bian: In situ TiB2 particulate reinforced near eutectic Al–Si alloy composites. Composites, Part A 33, 439 (2002).

    Article  Google Scholar 

  2. F. Wang, N. Ma, Y. Li, X. Li, and H. Wang: Impact behavior of in situ TiB2/Al composite at various temperatures. J. Mater. Sci. 46, 5192 (2011).

    Article  CAS  Google Scholar 

  3. Q. Guo, D.L. Sun, L.T. Jiang, G.H. Wu, and G.Q. Chen: Residual microstructure and damage geometry associated with high speed impact crater in Al2O3 and TiB2 particles reinforced 2024 Al composite. Mater. Charact. 66, 9 (2012).

    Article  CAS  Google Scholar 

  4. P. Li, Y. Wu, and X. Liu: Controlled synthesis of different morphologies of TiB2 microcrystals by aluminum melt reaction method. Mater. Res. Bull. 48, 2044 (2013).

    Article  CAS  Google Scholar 

  5. H. Ding, X. Liu, and J. Nie: Study of preparation of TiB2 by TiC in Al melts. Mater. Charact. 63, 56 (2012).

    Article  CAS  Google Scholar 

  6. L. Lü, M.O. Lai, Y. Su, H.L. Teo, and C.F. Feng: In situ TiB2 reinforced Al alloy composites. Scr. Mater. 45, 1017 (2001).

    Article  Google Scholar 

  7. Z. Wang, B. Xie, W. Zhou, G. Shi, and Z. Wu: Thermophysical properties of TiB2–SiC ceramics from 300 °C to 1700 °C. Int. J. Refract. Met. Hard Mater. 41, 609 (2013).

    Article  CAS  Google Scholar 

  8. S.M. Uddin, T. Mahmud, C. Wolf, C. Glanz, I. Kolaric, C. Volkmer, H. Höller, U. Wienecke, S. Roth, and H-J. Fecht: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Compos. Sci. Technol. 70, 2253 (2010).

    Article  CAS  Google Scholar 

  9. O. El-Kady and A. Fathy: Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater. Des. 54, 348 (2014).

    Article  CAS  Google Scholar 

  10. K.K. Deng, X.J. Wang, Y.W. Wu, X.S. Hu, K. Wu, and W.M. Gan: Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite. Mater. Sci. Eng., A 543, 158 (2012).

    Article  CAS  Google Scholar 

  11. Z. Li, D. Chen, H. Wang, E.J. Lavernia, and A. Shan: Nano-TiB2 reinforced ultrafine-grained pure Al produced by flux-assisted synthesis and asymmetrical rolling. J. Mater. Res. 29, 2514 (2014).

    Article  CAS  Google Scholar 

  12. L. Cha, S. Lartigue-Korinek, M. Walls, and L. Mazerolles: Interface structure and chemistry in a novel steel-based composite Fe–TiB2 obtained by eutectic solidification. Acta Mater. 60, 6382 (2012).

    Article  CAS  Google Scholar 

  13. Y.H. Wang, J.P. Lin, Y.H. He, Y.L. Wang, and G.L. Chen: Microstructural characteristics of Ti–45Al–8.5Nb/TiB2 composites by powder metallurgy. J. Alloys Compd. 468, 505 (2009).

    Article  CAS  Google Scholar 

  14. Y.H. Wang, J.P. Lin, Y.H. He, Y.L. Wang, and G.L. Chen: Microstructures and mechanical properties of Ti–45Al–8.5Nb–(W,B,Y) alloy by SPS–HIP route. Mater. Sci. Eng., A 489, 55 (2008).

    Article  Google Scholar 

  15. M. Guo, K. Shen, and M. Wang: Relationship between microstructure, properties and reaction conditions for Cu–TiB2 alloys prepared by in situ reaction. Acta Mater. 57, 4568 (2009).

    Article  CAS  Google Scholar 

  16. W. Sun, H. Xiang, F-Z. Dai, J. Liu, and Y. Zhou: Anisotropic surface stability of TiB2: A theoretical explanation for the easy grain coarsening. J. Mater. Res. 32, 2755 (2017).

    Article  CAS  Google Scholar 

  17. J. Sun, X. Zhang, Y. Zhang, N. Ma, and H. Wang: Effect of alloy elements on the morphology transformation of TiB2 particles in Al matrix. Micron 70, 21 (2015).

    Article  CAS  Google Scholar 

  18. Y. Cao, J. Fan, L. Bai, P. Hu, G. Yang, F. Yuan, and Y. Chen: Formation of cubic Cu mesocrystals by a solvothermal reaction. CrystEngComm 12, 3894 (2010).

    Article  CAS  Google Scholar 

  19. F. Zasada, W. Piskorz, S. Cristol, J-F. Paul, A. Kotarba, and Z. Sojka: Periodic density functional theory and atomistic thermodynamic studies of cobalt spinel nanocrystals in wet environment: Molecular interpretation of water adsorption equilibria. J. Phys. Chem. C 114, 22245 (2010).

    Article  CAS  Google Scholar 

  20. J. Zeng, Y. Zheng, M. Rycenga, J. Tao, Z-Y. Li, Q. Zhang, Y. Zhu, and Y. Xia: Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 132, 8552 (2010).

    Article  CAS  Google Scholar 

  21. Y. Ma, J. Zeng, W. Li, M. McKiernan, Z. Xie, and Y. Xia: Seed-mediated synthesis of truncated gold decahedrons with a AuCl/oleylamine complex as precursor. Adv. Mater. 22, 1930 (2010).

    Article  CAS  Google Scholar 

  22. L.B. Wang, L.X. Song, Z. Dang, J. Chen, J. Yang, and J. Zeng: Controlled growth and magnetic properties of α-Fe2O3 nanocrystals: Octahedra, cuboctahedra, and truncated cubes. CrystEngComm 14, 3355 (2012).

    Article  CAS  Google Scholar 

  23. S. Yang, Y. Xu, Y. Sun, G. Zhang, and D. Gao: Size-controlled synthesis, magnetic property, and photocatalytic property of uniform α-Fe2O3 nanoparticles via a facile additive-free hydrothermal route. CrystEngComm 14, 7915 (2012).

    Article  CAS  Google Scholar 

  24. X. Gao, X. Li, W. Gao, J. Qiu, X. Gan, C. Wang, and X. Leng: Nanocrystalline/nanoporous ZnO spheres, hexapods and disks transformed from zinc fluorohydroxide, their self-assembly and patterned growth. CrystEngComm 13, 4741 (2011).

    Article  CAS  Google Scholar 

  25. L. Pengting, L. Chong, N. Jinfeng, O. Jun, and L. Xiangfa: Growth and design of LaB6 microcrystals by aluminum melt reaction method. CrystEngComm 15, 411 (2013).

    Article  Google Scholar 

  26. Y. Yang, S. Jin, and Q. Jiang: Effect of reactant C/Ti ratio on the stoichiometry, morphology of TiCx and mechanical properties of TiCx–Ni composite. CrystEngComm 15, 852 (2013).

    Article  CAS  Google Scholar 

  27. S. Jin, P. Shen, Y. Li, D. Zhou, and Q. Jiang: Synthesis of spherical NbB2−x particles by controlling the stoichiometry. CrystEngComm 14, 1925 (2012).

    Article  CAS  Google Scholar 

  28. D. Huang, D. Yan, S. Ma, and X. Wang: Scandium on the formation of in situ TiB2 particulates in an aluminum matrix. J. Mater. Res. 33, 2721 (2018).

    Article  CAS  Google Scholar 

  29. Q. Gao, S. Wu, S. Lü, X. Xiong, R. Du, and P. An: Effects of ultrasonic vibration treatment on particles distribution of TiB2 particles reinforced aluminum composites. Mater. Sci. Eng., A 680, 437 (2017).

    Article  CAS  Google Scholar 

  30. G. Liu, K. Chen, H. Zhou, J. Tian, C. Pereira, and J. Ferreira: Fast shape evolution of TiN microcrystals in combustion synthesis. Cryst. Growth Des. 6, 2404 (2006).

    Article  CAS  Google Scholar 

  31. G. Benson and D. Patterson: Note on an analytical proof of wulff’s theorem in three dimensions. J. Chem. Phys. 23, 670 (1955).

    Article  CAS  Google Scholar 

  32. A.A. Abdel-Hamid, S. Hamar-Thibault, and R. Hamar: Crystal morphology of the compound TiB2. J. Cryst. Growth 71, 744 (1985).

    Article  CAS  Google Scholar 

  33. M. Hyman, C. McCullough, C. Levi, and R. Mehrabian: Evolution of boride morphologies in TiAl–B alloys. Metall. Trans. A 22, 1647 (1991).

    Article  Google Scholar 

  34. M-W. Chen, X-F. Wang, F. Wang, G-B. Lin, and Z-Z. Wang: The effect of interfacial kinetics on the morphological stability of a spherical particle. J. Cryst. Growth 362, 20 (2013).

    Article  CAS  Google Scholar 

  35. L. Chen, H-Y. Wang, Y-J. Li, M. Zha, and Q-C. Jiang: Morphology and size control of octahedral and cubic primary Mg2Si in an Mg–Si system by regulating Sr contents. CrystEngComm 16, 448 (2014).

    Article  CAS  Google Scholar 

  36. N. Li, R. Sakidja, and W-Y. Ching: Ab initio study on the adsorption mechanism of oxygen on Cr2AlC (0001) surface. Appl. Surf. Sci. 315, 45 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, X., Guo, L. et al. Synthesis of nanoscale spherical TiB2 particles in Al matrix by regulating Sc contents. Journal of Materials Research 34, 1258–1265 (2019). https://doi.org/10.1557/jmr.2018.469

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.469

Navigation