Skip to main content
Log in

Interplay of slip and twinning in niobium single crystals compressed at 77 K

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-purity niobium single crystals of five different orientations were compressed at 77 K to 2–4% plastic strain to investigate the mechanisms operative in the initial stage of yielding. The crystals deformed in the direction close to the [001] axis exhibit predominant slip on the high-stressed (101) and a much lower stressed (\(0\overline{1}1]\)) plane. The expected slip on the (\(\overline{1}01]\)) plane is nearly homogeneously distributed with only a few sharp slip traces corresponding to localized slip. The samples compressed along center-triangle orientations and those close to the [011] - [\(\overline{1}11]\)] edge deform predominantly by twinning on {112{<111> systems with some contribution from slip on the (\(\overline{1}01]\)) [\(\overline{1}\overline{1}\overline{1}]\)] system with the highest Schmid factor. A majority of twins exhibit internal contrast due to alternating slip on (\(\overline{1}01\)) and (\(0\overline{1}1\)) planes. No slip traces are observed in the matrix adjacent to the twin, which implies that twin boundaries are impenetrable obstacles for the motion of dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. E. Schmid and W. Boas: Plasticity of Crystals with Special Reference to Metals (F.A. Hughes & Co., London, 1950).

    Google Scholar 

  2. R. Maddin and N.K. Chen: Geometrical aspects of the plastic deformation of metal single crystals. Prog. Met. Phys. 5, 53 (1954).

    Article  CAS  Google Scholar 

  3. E. Votava: Eine neue Methode zur Herstellung verformungsfreier Einkristall-Zugproben hochschmelzender Metalle und einige Ergebnisse über die plastische Deformation von Niob-Einkristallen. Phys. Status Solidi A 5, 421 (1964).

    Article  CAS  Google Scholar 

  4. M.S. Duesbery, R.A. Foxall, and P.B. Hirsch: The plasticity of pure niobium crystals. J. Phys. Colloq. 27, 193 (1966).

    Article  Google Scholar 

  5. C.N. Reid, A. Gilbert, and G.T. Hahn: Twinning, slip and catastrophic flow in niobium. Trans. Metall. Soc. AIME 236, 1024 (1966).

    CAS  Google Scholar 

  6. R.A. Foxall, M.S. Duesbery, and P.B. Hirsch: The deformation of niobium single crystals. Can. J. Phys. 45, 607 (1967).

    Article  Google Scholar 

  7. G. Taylor and J.W. Christian: Experiments on the deformation of niobium single crystals. I. Stress versus strain curves and slip systems in compression and tension. Philos. Mag. 15, 873 (1967).

    Article  CAS  Google Scholar 

  8. G. Taylor and J.W. Christian: Experiments on the deformation of niobium single crystals. II. Electron microscope study of dislocation structures. Philos. Mag. A 15, 893 (1967).

    Article  CAS  Google Scholar 

  9. M.S. Duesbery and R.A. Foxall: A detailed study of deformation of high-purity niobium single crystals. Philos. Mag. 20, 719 (1969).

    Article  CAS  Google Scholar 

  10. C.D. Statham, D. Veselý, and J.W. Christian: Slip in single crystals of niobium-molybdenum alloys deformed in compression. Acta Metall. 18, 1243 (1970).

    Article  CAS  Google Scholar 

  11. C.J. Bolton and G. Taylor: Anomalous slip in high-purity niobium single crystals deformed at 77 K in tension. Philos. Mag. 26, 1359 (1972).

    Article  CAS  Google Scholar 

  12. N.A. Boucher and J.W. Christian: The influence of pre-strain on deformation twinning in niobium single crystals. Acta Metall. 20, 581 (1972).

    Article  CAS  Google Scholar 

  13. F. Louchet and L.P. Kubin: Dislocation substructures in the anomalous slip plane of single crystal niobium strained at 50 K. Acta Metall. 23, 17 (1975).

    Article  CAS  Google Scholar 

  14. A.J. Garratt-Reed and G. Taylor: Stress-strain curves for niobium crystals defofmed at temperatures below ambient. Philos. Mag. 33, 577 (1976).

    Article  CAS  Google Scholar 

  15. R.E. Reed and R.J. Arsenault: Further observations of anomalous slip in niobium single crystals. Scr. Metall. 10, 1003 (1976).

    Article  CAS  Google Scholar 

  16. A.J. Garratt-Reed and G. Taylor: Optical and electron microscopy of niobium crystals deformed below room temperature. Philos. Mag. A 39, 597 (1979).

    Article  CAS  Google Scholar 

  17. J. Nagakawa and M. Meshii: The deformation of niobium single crystals at temperatures between 77 and 4.2 K. Philos. Mag. A 44, 1165 (1981).

    Article  CAS  Google Scholar 

  18. W. Wasserbäch and V. Novák: Optical investigation of anomalous slip-line patterns in high purity niobium and tantalum single crystals after tensile deformation at 77 K. Mater. Sci. Eng. 73, 197 (1985).

    Article  Google Scholar 

  19. G. Taylor and M. Saka: Some observations on slip in niobium and Nb–Ti alloy deformed in situ in a HVEM. Philos. Mag. A 64, 1345 (1991).

    Article  CAS  Google Scholar 

  20. W. Wasserbäch: Anomalous slip in high-purity niobium and tantalum single crystals. Phys. Status Solidi A 147, 417 (1995).

    Article  Google Scholar 

  21. C.J. McHargue: Twinning in columbium. Trans. Metall. Soc. AIME 224, 334 (1962).

    CAS  Google Scholar 

  22. S. Mahajan: Accommodation at deformation twins in bcc crystals. Metall. Trans. A 12, 379 (1981).

    Article  CAS  Google Scholar 

  23. A.W. Sleeswyk: 1/2{111} screw dislocations and the nucleation of {112}<111> twins in the b.c.c. lattice. Philos. Mag. A 8, 1467 (1963).

    Article  Google Scholar 

  24. V. Vitek: Multilayer stacking faults and twins on {211} planes in b.c.c. metals. Scr. Metall. 4, 725 (1970).

    Article  CAS  Google Scholar 

  25. P.D. Bristowe, A.G. Crocker, and M.J. Norgett: The structure of twin boundaries in body-centred cubic metals. J. Phys. F: Met. Phys. 4, 1859 (1974).

    Article  CAS  Google Scholar 

  26. S. Ogata, J. Li, and S. Yip: Energy landscape of deformation twinning in bcc and fcc metals. Phys. Rev. B 71, 224102 (2005).

    Article  Google Scholar 

  27. A. Ojha and H. Sehitoglu: Twinning stress prediction in bcc metals and alloys. Philos. Mag. Lett. 94, 647 (2014).

    Article  CAS  Google Scholar 

  28. J. Marian, W. Cai, and V.V. Bulatov: Dynamic transitions from smooth to rough to twinning in dislocation motion. Nature Mater 3, 158 (2004).

    Article  CAS  Google Scholar 

  29. L.A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, and V.V. Bulatov: Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550, 492 (2017).

    Article  CAS  Google Scholar 

  30. C.Q. Chen, J.N. Florando, M. Kumar, K.T. Ramesh, and K.J. Hemker: Incipient deformation twinning in dynamically sheared bcc tantalum. Acta Mater. 69, 114 (2014).

    Article  CAS  Google Scholar 

  31. R.F. Zhang, J. Wang, I.J. Beyerlein, and T.C. Germann: Twinning in bcc metals under shock loading: A challenge to empirical potentials. Philos. Mag. Lett. 91, 731 (2011).

    Article  CAS  Google Scholar 

  32. D.L. Preston, D.L. Tonks, and D.C. Wallace: Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93, 211 (2003).

    Article  CAS  Google Scholar 

  33. L. Ventelon, F. Willaime, E. Clouet, and D. Rodney: Ab initio investigation of the Peierls potential of screw dislocations in bcc Fe and W. Acta Mater. 61, 3973 (2013).

    Article  CAS  Google Scholar 

  34. L. Dezerald, L. Ventelon, E. Clouet, C. Denoual, D. Rodney, and F. Willaime: Ab initio modeling of the two-dimensional energy landscape of screw dislocations in bcc transition metals. Phys. Rev. B 89, 024104 (2014).

    Article  Google Scholar 

  35. R. Gröger, Z. Chlup, T. Kuběnová, and I. Kuběna: Deformation twinning in vanadium single crystals tested in compression at 77 K. Mater. Sci. Eng., A. 737, 413 (2018).

    Article  Google Scholar 

  36. R. Gröger, Z. Chlup, I. Kuběna, and T. Kruml: Slip activity in molybdenum single crystals compressed at 77 K. Philos. Mag. 98, 2749 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge helpful discussions on the anomalous slip with Vaclav Vitek. This research was made possible due to financial support from the Czech Science Foundation, Grant No. 16-13797S. It has been carried out under the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Programme II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Gröger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gröger, R., Chlup, Z., Kuběnová, T. et al. Interplay of slip and twinning in niobium single crystals compressed at 77 K. Journal of Materials Research 34, 261–270 (2019). https://doi.org/10.1557/jmr.2018.398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.398

Navigation