Skip to main content
Log in

Polymer g-C3N4 wrapping bundle-like ZnO nanorod heterostructures with enhanced gas sensing properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ZnO/g-C3N4 binary heterostructures were formed by two steps, then the firm connection between ZnO NRs and lamellar g-C3N4 was characterized through powder XRD, FESEM with EDS, TEM, XPS, and Thermogravimetric analysis. Then the gas sensing performances of ZnO/g-C3N4 nanoheterostructures were analyzed systematically by using ethanol as a molecular probe. The results revealed that the fabricated compositive sensor not only exhibited quick response/recovery characteristics in the whole operating temperature (OT) range of 200–300 °C but also got a maximum response of 14.29 toward 100 ppm of ethanol at the optimal OT of only 260 °C. Moreover, such heterostructures also demonstrated good selectivity and superb reproducibility to acetone among all the tested toxic gases, especially higher response and faster response-recovery speeds than the pristine ZnO sensor. The above ZnO/g-C3N4 heterostructures may also supply other novel applications in the aspects of lithium-ion batteries, photocatalysis, optical devices, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. Y-S. Wang, S-R. Wang, H-X. Zhang, X-L. Gao, J-D. Yang, and L-W. Wang: Brookite TiO2 decorated α-Fe2O3 nanoheterostructures with rod morphologies for gas sensor application. J. Mater. Chem. A 2, 7935 (2014).

    Article  CAS  Google Scholar 

  2. X. Chen, Z. Guo, W-H. Xu, H-B. Yao, M-Q. Li, J-H. Liu, X-J. Huang, and S-H. Yu: Templating synthesis of SnO2 nanotubes loaded with Ag2O nanoparticles and their enhanced gas sensing properties. Adv. Funct. Mater. 21, 2049 (2011).

    Article  CAS  Google Scholar 

  3. Y.V. Kaneti, X. Zhang, M-S. Liu, D. Yu, Y. Yuan, L. Aldous, and X-C. Jiang: Experimental and theoretical studies of gold nanoparticle decorated zinc oxide nanoflakes with exposed {1 0 0} facets for butylamine sensing. Sens. Actuators, B 230, 581 (2016).

    Article  CAS  Google Scholar 

  4. X-L. Li, W-J. Wei, S-Z. Wang, L. Kuai, and B-Y. Geng: Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: High-yield synthesis, growth mechanism and structure enhanced gas-sensing property. Nanoscale 3, 718 (2011).

    Article  CAS  Google Scholar 

  5. N.V. Toan, N.V. Chien, N.V. Duy, H.S. Hong, H. Nguyen, N.D. Hoa, and N.V. Hieu: Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands. J. Hazard. Mater. 301, 433 (2016).

    Article  CAS  Google Scholar 

  6. S. Xu and Z-L. Wang: One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 4, 1013 (2011).

    Article  CAS  Google Scholar 

  7. L-T. Ma, H-Q. Fan, H-L. Tian, J-W. Fang, and X-Z. Qian: The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing. Sens. Actuators, B 222, 508 (2016).

    Article  CAS  Google Scholar 

  8. R. Ab Kadir, R.A. Rani, M.M.Y.A. Alsaif, J.Z. Ou, W. Wlodarski, A.P. O’Mullane, and K. Kalantar-zadeh: Optical gas sensing properties of nanoporous Nb2O5 films. ACS Appl. Mater. Interfaces 7, 4751 (2015).

    Article  CAS  Google Scholar 

  9. Y-F. Wang, F-D. Qu, J. Liu, Y. Wang, J-G. Zhou, and S-P. Ruan: Enhanced H2S sensing characteristics of CuO–NiO core–shell microspheres sensors. Sens. Actuators, B 209, 515 (2015).

    Article  CAS  Google Scholar 

  10. C. Wang, X. Li, C-H. Feng, Y-F. Sun, and G-Y. Lu: Nanosheets assembled hierarchical flower-like WO3 nanostructures: Synthesis, characterization, and their gas sensing properties. Sens. Actuators, B 210, 75 (2015).

    Article  CAS  Google Scholar 

  11. I.S. Hwang, J.K. Choi, H.S. Woo, S.J. Kim, S.Y. Jung, T.Y. Tae-Yeon Seong, I.D. Kim, and J.H. Lee: Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl. Mater. Interfaces 3, 3140 (2011).

    Article  CAS  Google Scholar 

  12. M. Tonezzer and N.V. Hieu: Size-dependent response of single-nanowire gas sensors. Sens. Actuators, B 163, 146 (2012).

    Article  CAS  Google Scholar 

  13. J-S. Chen, L.A. Archer, and X-W. Lou: SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J. Mater. Chem. 21, 9912 (2011).

    Article  CAS  Google Scholar 

  14. K. Wang, T-Y. Zhao, G. Lian, Q-Q. Yu, C-H. Luan, Q-L. Wang, and D-L. Cui: Room temperature CO sensor fabricated from Pt-loaded SnO2 porous nanosolid. Sens. Actuators, B 184, 33 (2013).

    Article  CAS  Google Scholar 

  15. S-R. Wang, J-X. Zhang, J-D. Yang, X-L. Gao, H-X. Zhang, Y-S. Wang, and Z-Y. Zhu: Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanoheterostructures for enhanced gas sensing performances. RSC Adv. 5, 10048 (2015).

    Article  CAS  Google Scholar 

  16. L-W. Wang, Y-F. Kang, X-H. Liu, S-M. Zhang, W-P. Huang, and S-R. Wang: ZnO nanorod gas sensor for ethanol detection. Sens. Actuators, B 162, 237 (2012).

    Article  CAS  Google Scholar 

  17. D. Zhu, Y-M. Fu, W-L. Zang, Y-Y. Zhao, L-L. Xing, and X-Y. Xue: Room-temperature self-powered ethanol sensor based on the piezo-surface coupling effect of heterostructured α-Fe2O3/ZnO nanowires. Nano Lett. 166, 288 (2016).

    CAS  Google Scholar 

  18. J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, and Z-L. Wang: ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 21, 405203 (2010).

    Article  CAS  Google Scholar 

  19. E. Comini, G. Faglia, G. Sberveglieri, Z-W. Pan, and Z-L. Wang: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).

    Article  CAS  Google Scholar 

  20. L-W. Wang, S-R. Wang, M-J. Xu, X-J. Hu, H-X. Zhang, Y-S. Wang, and W-P. Huang: A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene. Phys. Chem. Chem. Phys. 15, 17179 (2013).

    Article  CAS  Google Scholar 

  21. B. Wang, Y-D. Wang, Y-P. Lei, S. Xie, N. Wu, Y-Z. Gou, C. Han, Q. Shi, and D. Fang: Vertical SnO2 nanosheet@SiC nanofibers with hierarchical architecture for high-performance gas sensors. J. Mater. Chem. C 4, 295 (2016).

    Article  CAS  Google Scholar 

  22. J. Zhang, X-H. Liu, L-W. Wang, T-L. Yang, X-Z. Guo, S-H. Wu, S-R. Wang, and S-M. Zhang: Synthesis and gas sensing properties of α-Fe2O3@ZnO core–shell nanospindles. Nanotechnology 22, 185501 (2011).

    Article  CAS  Google Scholar 

  23. L. Shi, Y-M. Xu, S-K. Hark, Y. Liu, S. Wang, L-M. Peng, K-W. Wong, and Q. Li: Optical and electrical performance of SnO2 capped ZnO nanowire arrays. Nano Lett. 7, 3559 (2007).

    Article  CAS  Google Scholar 

  24. A. Kargar, Y. Jing, S-J. Kim, C-T. Riley, X-Q. Pan, and D-L. Wang: ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 7, 11112 (2013).

    Article  CAS  Google Scholar 

  25. F. Li, Y-J. Chen, and J-M. Ma: Porous SnO2 nanoplates for highly sensitive NO detection. J. Mater. Chem. A 2, 7175 (2014).

    Article  CAS  Google Scholar 

  26. K. Fan, J. Guo, L-M. Cha, Q-J. Chen, and J-M. Ma: Atomic layer deposition of ZnO onto Fe2O3 nanoplates for enhanced H2S sensing. J. Alloys Compd. 698, 336 (2017).

    Article  CAS  Google Scholar 

  27. X-L. Deng, L-L. Zhang, J. Guo, Q-J. Chen, and J-M. Ma: ZnO enhanced NiO-based gas sensors towards ethanol. Mater. Res. Bull. 90, 170 (2017).

    Article  CAS  Google Scholar 

  28. X-C. Wang, K. Maeda, X-F. Chen, K. Takanabe, K. Domen, Y-D. Hou, X-Z. Fu, and M. Antonietti: Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 131, 1680 (2009).

    Article  CAS  Google Scholar 

  29. Z-M. Pan, Y. Zheng, F-S. Guo, P-P. Niu, and X-C. Wang: Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. ChemSusChem 10, 87 (2017).

    Article  CAS  Google Scholar 

  30. X-C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2009).

    Article  CAS  Google Scholar 

  31. Y. Zheng, L-H. Lin, X-J. Ye, F-S. Guo, and X-C. Wang: Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew. Chem., Int. Ed. 53, 1 (2014).

    Article  Google Scholar 

  32. Y-J. Wang, R. Shi, J. Lin, and Y-F. Zhu: Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 4, 2922 (2011).

    Article  CAS  Google Scholar 

  33. Y-J. Zhang, D-K. Zhang, W-M. Guo, and S-J. Chen: The α-Fe2O3/g-C3N4 heterostructural nanocomposites with enhanced ethanol gas sensing performance. J. Alloys Compd. 685, 84 (2016).

    Article  CAS  Google Scholar 

  34. L-W. Wang, J-T. Li, Y-H. Wang, K-F. Yu, S-P. Wang, Y-Y. Zhang, and S-C. Wei: A novel low temperature gas sensor based on Pt-decorated hierarchical 3D SnO2 nanocomposites. Sens. Actuators, B 232, 91 (2016).

    Article  CAS  Google Scholar 

  35. L-W. Wang, J-T. Li, Y-H. Wang, K-F. Yu, X-Y. Tang, Y-Y. Zhang, S-P. Wang, and C-S. Wei: Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n -butylamine sensing performances. Sci. Rep. 6, 35079 (2016).

    Article  CAS  Google Scholar 

  36. W.K. Jo, J.Y. Lee, and N.C.S. Selvam: Synthesis of MoS2 nanosheets loaded ZnO–g-C3N4 nanocomposites for enhanced photocatalytic applications. Chem. Eng. J. 289, 306 (2016).

    Article  CAS  Google Scholar 

  37. H-J. Yu, L. Shang, T. Bian, R. Shi, G.I.N. Waterhouse, Y-F. Zhao, C. Zhou, L-Z. Wu, C.H. Tung, and T-R. Zhang: Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 28, 5080 (2016).

    Article  CAS  Google Scholar 

  38. K. Musa-Veloso, S.S. Likhodii, and S.C. Cunnane: Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am. J. Clin. Nutr. 76, 65 (2002).

    Article  CAS  Google Scholar 

  39. D.E. Williams: Semiconducting oxides as gas-sensitive resistors. Sens. Actuators, B 57, 1 (1999).

    Article  CAS  Google Scholar 

  40. D-Y. Fu, C-L. Zhu, X-T. Zhang, C-Y. Li, and Y-J. Chen: Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor. J. Mater. Chem. A 4, 1390 (2016).

    Article  CAS  Google Scholar 

  41. J. Liang, Y. Zheng, J. Chen, J. Liu, D.H. Jurcakova, M. Jaroniec, and S-Z. Qiao: Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem., Int. Ed. 51, 3892 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the National Natural Science Foundation of China (Nos. 91428203, 41473118, and 51762005), the BaGui Scholars Program Foundation (2014BGXZGX03), and the Natural Science Foundation of Guangxi Province, China (Nos. 2016GXNSFBA380232 and 2017GXNSFAA198254).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinghui Wang or Kefu Yu.

Supplementary Material

43578_2018_33101401_MOESM1_ESM.doc

Supporting Information for Polymer g-C3N4 wrapping bundle-like ZnO nanorod heterostructures with enhanced gas sensing properties (approximately 1.30 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, H., Fu, H. et al. Polymer g-C3N4 wrapping bundle-like ZnO nanorod heterostructures with enhanced gas sensing properties. Journal of Materials Research 33, 1401–1410 (2018). https://doi.org/10.1557/jmr.2018.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.37

Navigation