Skip to main content
Log in

New insights on the basicity of ZnAl–Zr hydrotalcites activated at low temperature and their application in transesterification of soybean oil

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

ZnAl–Zr(X) hydrotalcite-like materials were synthesized by co-precipitation using a Zn/Al molar ratio of 2 and Zr/Al(X) molar ratios of 0.0, 0.10, and 0.25. The effect of the activation temperature on the catalytic performance of these materials was analyzed, revealing that at relatively low temperature (200 °C), the collapse of the material structure is diminished, leading to FAME yields varying from 68 to 82%. This remarkable catalytic activity is related to the formation of hydrotalcite, zincite, and hydrozincite which in turn lead to the generation of Brönsted basic sites and Lewis acid–basic pairs. Incorporation of Zr+4 into the brucite-like structure of hydrotalcites enhances the basicity of ZnAl–Zr(X) catalysts, which correlates well with the increase in catalytic activity observed for these catalysts. The stability of the ZnAl–Zr(0.25) catalyst was further studied, showing insignificant deactivation after five subsequent reaction cycles. A simplified reaction scheme was proposed for the transesterification reaction over these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. A. Datta and B.K. Mandal: A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renewable Sustainable Energy Rev. 57, 799 (2016).

    Article  CAS  Google Scholar 

  2. J. Thangaraja, K. Anand, and P.S. Mehta: Biodiesel NOx penalty and control measures—A review. Renewable Sustainable Energy Rev. 61, 1 (2016).

    Article  CAS  Google Scholar 

  3. M. Tariq, S. Ali, and N. Khalid: Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renewable Sustainable Energy Rev. 16, 6303 (2012).

    Article  CAS  Google Scholar 

  4. Y.C. Sharma, B. Singh, and J. Korstad: Latest developments on application of heterogeneous basic catalysts for an efficient and eco-friendly synthesis of biodiesel: A review. Fuel 90, 1309 (2011).

    Article  CAS  Google Scholar 

  5. M. Sasidharan and R. Kumar: Transesterification over various zeolites under liquid-phase conditions. J. Mol. Catal. A: Chem. 210, 93 (2004).

    Article  CAS  Google Scholar 

  6. M.J. Ramos, A. Casas, L. Rodríguez, R. Romero, and A. Pérez: Transesterification of sunflower oil over zeolites using different metal loading: A case of leaching and agglomeration studies. Appl. Catal., A 346, 79 (2008).

    Article  CAS  Google Scholar 

  7. S.L. Martínez, R. Romero, J.C. López, A. Romero, V. Sánchez Mendieta, and R. Natividad: Preparation and characterization of CaO nanoparticles/NaX zeolite catalysts for the transesterification of sunflower oil. Ind. Eng. Chem. Res. 50, 2665 (2011).

    Article  CAS  Google Scholar 

  8. T.F. Dossin, M-F. Reyniers, and G.B. Marin: Kinetics of heterogeneously MgO-catalyzed transesterification. Appl. Catal., B 61, 35 (2006).

    Article  CAS  Google Scholar 

  9. X. Liu, H. He, Y. Wang, S. Zhu, and X. Piao: Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87, 216 (2008).

    Article  CAS  Google Scholar 

  10. A. Galadima and O. Muraza: Biodiesel production from algae by using heterogeneous catalysts: A critical review. Energy 78, 72 (2014).

    Article  CAS  Google Scholar 

  11. H. Sun, Y. Ding, J. Duan, Q. Zhang, Z. Wang, H. Lou, and X. Zheng: Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst. Bioresour. Technol. 101, 953 (2010).

    Article  CAS  Google Scholar 

  12. R. Madhuvilakku and S. Piraman: Biodiesel synthesis by TiO2–ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresour. Technol. 150, 55 (2013).

    Article  CAS  Google Scholar 

  13. P. Hernández-Hipólito, M. García-Castillejos, E. Martínez-Klimova, N. Juárez-Flores, A. Gómez-Cortés, and T. Klimova: Biodiesel production with nanotubular sodium titanate as a catalysts. Catal. Today 220–222, 4 (2014).

    Article  CAS  Google Scholar 

  14. Y. Liu, E. Lotero, J.G. Goodwin, Jr., and X. Mo: Transesterification of poultry fat with methanol using Mg–Al hydrotalcite derived catalysts. Appl. Catal., A 331, 138 (2007).

    Article  CAS  Google Scholar 

  15. H-Y. Zeng, K-B. Liao, X. Deng, H. Jiang, and F. Zhang: Characterization of the lipase immobilized on Mg–Al hydrotalcite for biodiesel. Process Biochem. 444, 791 (2009).

    Article  CAS  Google Scholar 

  16. C. Sun, F. Qiu, D. Yang, and B. Ye: Preparation of biodiesel from soybean oil catalyzed by Al–Ca hydrotalcite loaded with K2CO3 as heterogeneous solid base catalyst. Fuel Process. Technol. 126, 383 (2014).

    Article  CAS  Google Scholar 

  17. J. Nowicki, J. Lach, M. Organek, and E. Sabura: Transesterification of rapeseed oil to biodiesel over Zr-dopped MgAl hydrotalcites. Appl. Catal., A 524, 17 (2016).

    Article  CAS  Google Scholar 

  18. W. Jiang, H.F. Lu, T. Qi, S.L. Yan, and B. Liang: Preparation, application, and optimization of Zn/Al complex oxides for biodiesel production under sub-critical conditions. Biotechnol. Adv. 28, 620 (2010).

    Article  CAS  Google Scholar 

  19. F. Tzompantzi, Y. Carrera, G. Morales-Mendoza, G. Valverde-Aguilar, and A. Mantilla: ZnO–Al2O3–La2O3 layered double hydroxides as catalyst precursors for the esterification of oleic acid fatty grass at low temperature. Catal. Today 212, 164 (2013).

    Article  CAS  Google Scholar 

  20. A.P. Soares Dias, J. Bernardo, P. Felizardo, and M.J. Neiva Correia: Biodiesel production over thermal activated cerium modified Mg–Al hydrotalcites. Energy 41, 344 (2012).

    Article  CAS  Google Scholar 

  21. Q. Liu, C. Wang, W. Qu, B. Wang, Z. Tian, H. Ma, and R. Xu: The application of Zr incorporated Zn–Al dehydrated hydrotalcites as solid base in transesterification. Catal. Today 234, 161 (2014).

    Article  CAS  Google Scholar 

  22. F. Cavani, F. Trifiró, and A. Vaccari: Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 11, 173 (1991).

    Article  CAS  Google Scholar 

  23. D.A. Cabrera-Munguia, F. Tzompantzi, A. Gutiérrez-Alejandre, J.L. Rico, and H. González: ZnAl–Zr hydrotalcite-like compounds activated at low temperature as solid base catalyst for the transesterification of vegetable oils. Energy Procedia 142, 582 (2017).

    Article  CAS  Google Scholar 

  24. J.M. Fraile, N. García, J.A. Mayoral, E. Pires, and L. Roldán: The basicity of mixed oxides and the influence of alkaline metals: The case of transesterification reactions. Appl. Catal., A 387, 67 (2010).

    Article  CAS  Google Scholar 

  25. D.A. Cabrera-Munguía, H. González, A. Gutiérrez-Alejandre, J.L. Rico, R. Huirache-Acuña, R. Maya-Yescas, and R.E. del Río: Heterogeneous acid conversion of a tricaprylin-palmitic acid mixture over Al-SBA-15 catalysts: Reaction study for biodiesel synthesis. Catal. Today 282, 195 (2017).

    Article  CAS  Google Scholar 

  26. S. Velu, D.P. Sabde, N. Shah, and S. Sivasanker: New hydrotalcite-like anionic clays containing Zr4+ in the layers: Synthesis and physicochemical properties. Chem. Mater. 10, 3451 (1998).

    Article  CAS  Google Scholar 

  27. D. Tichit, N. Das, B. Coq, and R. Durand: Preparation of Zr-containing layered double hydroxides and characterization of the acid-basic properties of their mixed oxides. Chem. Mater. 14, 1530 (2002).

    Article  CAS  Google Scholar 

  28. P. Koilraj and S. Kannan: Phosphate uptake behavior of ZnAlZr ternary layered double hydroxides through surface precipitation. J. Colloid Interface Sci. 341, 289 (2010).

    Article  CAS  Google Scholar 

  29. N.N. Das, J. Konar, M.K. Mohanta, and S.C. Srivastava: Adsorption of Cr(VI) and Se(IV) from their aqueos solutions onto Zr4+-substituted ZnAl/MgAl-layered double hydroxides: Effect of Zr4+ substitution in the layer. J. Colloid Interface Sci. 270, 1 (2004).

    Article  CAS  Google Scholar 

  30. E.M. Seftel, E. Popovici, M. Mertens, K. De Witte, G. Van Tendeloo, P. Cool, and E.F. Vansant: Zn–Al layered double hydroxides: Synthesis, characterization and photocatalytic application. Microporous Mesoporous Mater. 113, 296 (2008).

    Article  CAS  Google Scholar 

  31. J.S. Valente, H. Pfeiffer, E. Lima, J. Prince, and J. Flores: Cyanoethylation of alcohols by activated Mg–Al layered double hydroxides: Influence of rehydration conditions and Mg/Al molar ratio on Brönsted basicity. J. Catal. 279, 196 (2011).

    Article  CAS  Google Scholar 

  32. M.G. Álvarez, R.J. Chimentᾶo, N. Barrabés, K. Föttinger, F. Gispert-Guirado, E. Kleymenov, D. Tichit, and F. Medina: Structure evolution of layered double hydroxides by ultrasound induced reconstruction. Appl. Clay Sci. 83–84, 1 (2013).

    Article  CAS  Google Scholar 

  33. D. Wu, W. Wang, F. Tan, F. Sun, H. Lu, and X. Qiao: Fabrication of pit-structures ZnO nanorods and their enhanced photocatalytic performance. RSC Adv. 3, 20054 (2013).

    Article  CAS  Google Scholar 

  34. T. López, E. Ramos, P. Bosch, M. Asomoza, and R. Gómez: DTA and TGA characterization of sol–gel hydrotalcites. Mater. Lett. 30, 279 (1997).

    Article  Google Scholar 

  35. C. Vaysse, L. Guerlou-Demorgues, and C. Delmas: Thermal evolution of carbonate pillared layered hydroxides with (Ni, L)(L = Fe, Co) base slabs: Grafting or non grafting of carbonate anions? Inorg. Chem. 41, 6905 (2001).

    Article  CAS  Google Scholar 

  36. P.M. Veiga, A.S. Luna, M.F. Portilho, C.O. Veloso, and C.A. Henriques: Zn, Al-catalysts for heterogeneous biodiesel production: Basicity and process optimization. Energy 75, 453 (2014).

    Article  CAS  Google Scholar 

  37. Q. Liu, C. Wang, W. Qu, B. Wang, Z. Tian, H. Ma, and R. Xu: Basicities and transesterification activities of Zn–Al hydrotalcites-derived solid bases. Green Chem. 16, 2604 (2014).

    Article  CAS  Google Scholar 

  38. G. Busca, P.F. Rossi, V. Lorenzelli, V. Benaissa, J. Travert, and J.C. Lavalley: Microcalorimetric and Fourier transform infrared spectroscopic studies of methanol adsorption on alumina. J. Phys. Chem. 89, 5433 (1985).

    Article  CAS  Google Scholar 

  39. A. Riva, F. Trifiro, A. Vaccari, L. Mintchev, and G. Busca: Structure and reactivity of zinc–chromium mixed oxides. Part 2: Study of the surface reactivity by temperature-programmed desorption of methanol. J. Chem. Soc., Faraday Trans. 84, 1423 (1988).

    Article  CAS  Google Scholar 

  40. C. Chauvin, J. Saussey, J.C. Lavalley, H. Idriss, J.P. Hindermann, A. Kiennemann, P. Chaumette, and P. Courty: Combined infrared spectroscopy, chemical trapping, and thermos programmed desorption studies of methanol and decomposition on ZnAl2O4 and Cu/ZnAl2O4. J. Catal. 121, 56 (1990).

    Article  CAS  Google Scholar 

  41. T. Montanari, M. Sisani, M. Nocchetti, R. Vivani, M.C. Herrera-Delgado, G. Ramis, G. Busca, and U. Constantino: Zinc–aluminum hydrotalcites as precursors of basic catalysts: Preparation, characterization and study of the activation of methanol. Catal. Today 152, 104 (2010).

    Article  CAS  Google Scholar 

  42. S. Velu, V. Ramkumar, A. Narayanan, and C.S. Swamy: Effect of interlayer anions on the physicochemical properties of zinc–aluminum hydrotalcite-like compunds. J. Mater. Sci. 32, 957 (1997).

    Article  CAS  Google Scholar 

  43. F.R. Chen, J.G. Davis, and J.J. Fripiat: Aluminum coordination and lewis acidity in transition aluminas. J. Catal. 133, 263 (1992).

    Article  CAS  Google Scholar 

  44. D. Coster and J.J. Fripiat: Memory effects in gel-solid transformations: Coordinately unsaturated Al sites in nanosized aluminas. Chem. Mater. 5, 1204 (1993).

    Article  CAS  Google Scholar 

  45. J.A. Wang, X. Bokhimi, O. Novaro, T. López, F. Tzompantzi, R. Gómez, J. Navarrete, M.E. Llanos, and M.E. López-Salinas: Effects of structural defects and acid-basic properties on the activity and selectivity of isopropanol decomposition on nanocrystallite sol–gel alumina catalyst. J. Mol. Catal. A: Chem. 137, 239 (1999).

    Article  CAS  Google Scholar 

  46. J.M. Vohs and M.A. Barteau: Photoelectron spectroscopy of diethylzinc on the polar surfaces of zinc oxide. J. Electron Spectrosc. Relat. Phenom. 49, 87 (1989).

    Article  CAS  Google Scholar 

  47. P. Stoyanov, S. Akhtert, and J.M. White: XPS study of metal/polymer interaction: Evaporated aluminum on polyvinyl alcohol. Surf. Interface Anal. 15, 509 (1990).

    Article  CAS  Google Scholar 

  48. R. Sanna, D. Medas, F. Poddda, C. Meneghini, M. Casu, P. Lattanzi, M.A. Scorciapino, C. Floris, C. Cannas, and G. de Giudici: Binding of bis-(2-ethylhexyl) phthalate at the surface of hydrozincite nanocrystals: An example of organic molecules absorption onto nanocrystalline minerals. J. Colloid Interface Sci. 457, 298 (2015).

    Article  CAS  Google Scholar 

  49. A. Dermibas: Biodiesel: A Realistic Fuel Alternative for Diesel Engines (Springer, London, 2008).

    Google Scholar 

Download references

ACKNOWLEDGMENT

The authors greatly appreciate financial support by CIC-UMSNH. DACM thanks CONACyT for the grant (487883) received during the development of this work. The authors also thank Rogelio Cuevas García for his assistance with the TGA experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio González.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Munguía, D.A., González, H., Tzompantzi, F. et al. New insights on the basicity of ZnAl–Zr hydrotalcites activated at low temperature and their application in transesterification of soybean oil. Journal of Materials Research 33, 3614–3624 (2018). https://doi.org/10.1557/jmr.2018.312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.312

Navigation