Skip to main content
Log in

Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

NiO nanoparticles (NPs) were synthesized at different annealing temperatures via a thermal decomposition process and characterized using X-ray diffraction, scanning electron microscopy, and UV-vis spectroscopy. The NiO NPs prepared at higher annealing temperature (400 °C) were shown excellent adsorption and photocatalytic activity toward textile dyes reactive black 5 (RB-5) and methylene blue (MB). About 87.2% of RB-5 in 60 min and 70.2% of MB in 5 h was removed using NiO NPs synthesized at 400 °C. The photocatalytic degradation of MB was found to increase with an increase in the annealing temperature of the catalyst. Moreover, the kinetic study revealed that the adsorption and photocatalytic activity of NiO NPs followed the second and first-order kinetics, respectively. The enhanced performance of NiO NPs toward dye removal might be related to its optical and structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. M.N. Chong, Y.J. Cho, P.E. Poh, and B. Jin: Evaluation of titanium dioxide photocatalytic technology for the treatment of reactive black 5 dye in synthetic and real greywater effluents. J. Clean. Prod. 89, 196 (2015).

    CAS  Google Scholar 

  2. J.T. Chacko and K. Subramaniam: Enzymatic degradation of azo dyes—A review. Int. J. Environ. Sci. 1, 1250 (2011).

    Google Scholar 

  3. M. Tarrago, M. Garcia-Valles, M.H. Aly, and S. Martínez: Valorization of sludge from a wastewater treatment plant by glass-ceramic production. Ceram. Int. 43, 930 (2017).

    CAS  Google Scholar 

  4. J. Niu, L. Zhang, Y. Li, J. Zhao, S. Lv, and K. Xiao: Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: Kinetics and mechanism. J. Environ. Sci. 25, 1098 (2013).

    CAS  Google Scholar 

  5. E. Kalkan, H. Nadaroğlu, N. Celebi, and G. Tozsin: Removal of textile dye reactive black 5 from aqueous solution by adsorption on laccase-modified silica fume. Desalin. Water Treat. 52, 6122 (2014).

    CAS  Google Scholar 

  6. J. Vijayaraghavan, S.S. Basha, and J. Jegan: A review on efficacious methods to decolorize reactive azo dye. J. Urban Environ. Eng. 7, 30–47 (2013).

    Google Scholar 

  7. M. Farrokhi, S-C. Hosseini, J-K. Yang, and M. Shirzad-Siboni: Application of ZnO–Fe3O4 nanocomposite on the removal of azo dye from aqueous solutions: Kinetics and equilibrium studies. Water Air Soil Pollut. 225, 2113 (2014).

    Google Scholar 

  8. M. Ramesh, H.S. Nagaraja, M.P. Rao, S. Anandan, and N.M. Huang: Fabrication, characterization and catalytic activity of α-MnO2 nanowires for dye degradation of reactive black 5. Mater. Lett. 172, 85 (2016).

    CAS  Google Scholar 

  9. H.J. Song, S. You, X.H. Jia, and J. Yang: MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceram. Int. 41, 13896 (2015).

    CAS  Google Scholar 

  10. M. El-Kemary, N. Nagy, and I. El-Mehasseb: Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 16, 1747 (2013).

    CAS  Google Scholar 

  11. N. Murakami, S. Kawakami, T. Tsubota, and T. Ohno: Dependence of photocatalytic activity on particle size of a shape-controlled anatase titanium(IV) oxide nanocrystal. J. Mol. Catal. Chem. 358, 106 (2012).

    CAS  Google Scholar 

  12. T. Theivasanthi, M. Alagar, and others: Chemical capping synthesis of nickel oxide nanoparticles and their characterizations studies. ArXiv Prepr. J. Nanosci. Nanotechnol. 2, 134–138 (2012).

    Google Scholar 

  13. A.G. Al-Sehemi, A.S. Al-Shihri, A. Kalam, G. Du, and T. Ahmad: Microwave synthesis, optical properties and surface area studies of NiO nanoparticles. J. Mol. Struct. 1058, 56 (2014).

    CAS  Google Scholar 

  14. S-A. Ong, O-M. Min, L-N. Ho, and Y-S. Wong: Comparative study on photocatalytic degradation of mono azo dye acid orange 7 and methyl orange under solar light irradiation. Water Air Soil Pollut. 223, 5483 (2012).

    CAS  Google Scholar 

  15. A.P. Batista, H.W.P. Carvalho, G.H. Luz, P.F. Martins, M. Gonçalves, and L.C. Oliveira: Preparation of CuO/SiO2 and photocatalytic activity by degradation of methylene blue. Environ. Chem. Lett. 8, 63 (2010).

    CAS  Google Scholar 

  16. J-H. Sun, S-P. Sun, G-L. Wang, and L-P. Qiao: Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes Pigments 74, 647 (2007).

    CAS  Google Scholar 

  17. M.A. Rauf, M.A. Meetani, A. Khaleel, and A. Ahmed: Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 157, 373 (2010).

    CAS  Google Scholar 

  18. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J-M. Herrmann: Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 31, 145 (2001).

    CAS  Google Scholar 

  19. M.B. Mukhlish, F. Najnin, M.M. Rahman, and M.J. Uddin: Photocatalytic degradation of different dyes using TiO2 with high surface area: A kinetic study. J. Sci. Res. 5, 301 (2013).

    CAS  Google Scholar 

  20. C. Hachem, F. Bocquillon, O. Zahraa, and M. Bouchy: Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigments 49, 117 (2001).

    CAS  Google Scholar 

  21. M.A. Ramdan, A.M. Hashem, W.A. Al-Shareef, and L.T. Essam: Decolorization of reactive black 5 by micrococcus luteus and Candida albicans in wastewaters. World Appl. Sci. J. 32, 153–163 (2014).

    Google Scholar 

  22. N. Kaur, S.K. Shahi, and V. Singh: Anomalous behavior of visible light active TiO2 for the photocatalytic degradation of different reactive dyes. Photochem. Photobiol. Sci. 14, 2024 (2015).

    CAS  Google Scholar 

  23. T. Kodom, A. Dougna, I. Tchakala, M-E.D. Gnazou, G. Djaneye-Boundjou, and M.L. Bawa: TiO2 PC500 coated on non woven paper with SiO2 as a binder-assisted photocatalytic degradation of reactive black 5 in aqueous solution. J. Water Resour. Protect. 5, 1227 (2013).

    Google Scholar 

  24. J. Puentes-Cárdenas, A. Florido-Cuellar, J. Cardona-Bedoya, P. Bohorquez-Echeverry, C. Campos-Pinilla, V. Gutiérrez-Romero, and A. Pedroza-Rodríguez: Simultaneous decolorization and detoxification of black reactive 5 using TiO2 deposited over borosilicate glass. Univ. Sci. 17, 53 (2012).

    Google Scholar 

  25. S. Saravanan and T. Sivasankar: Effect of ultrasound power and calcination temperature on the sonochemical synthesis of copper oxide nanoparticles for textile dyes treatment. Environ. Prog. Sustain. Energy 25, 669–679 (2016).

    Google Scholar 

  26. S. Fatima, S.I. Ali, M.Z. Iqbal, and S. Rizwan: The high photocatalytic activity and reduced band gap energy of La and Mn co-doped BiFeO3/graphene nanoplatelet (GNP) nanohybrids. RSC Adv. 7, 35928 (2017).

    CAS  Google Scholar 

  27. M. Jalalah, M. Faisal, H. Bouzid, J-G. Park, S.A. Al-Sayari, and A.A. Ismail: Comparative study on photocatalytic performances of crystalline α- and β-Bi2O3 nanoparticles under visible light. J. Ind. Eng. Chem. 30, 183 (2015).

    CAS  Google Scholar 

  28. W-F. Tan, Y-T. Yu, M-X. Wang, F. Liu, and L.K. Koopal: Shape evolution synthesis of monodisperse spherical, ellipsoidal, and elongated hematite (α-Fe2O3) nanoparticles using ascorbic acid. Cryst. Growth Des. 14, 157 (2013).

    Google Scholar 

  29. M.P. Rao, S. Anandan, S. Suresh, A.M. Asiri, and J.J. Wu: Surfactant assisted synthesis of copper oxide nanoparticles for photocatalytic degradation of methylene blue in the presence of visible light. Energy Environ. Focus 4, 250 (2015).

    Google Scholar 

  30. L-F. Hu, R. Li, J. He, L. Da, W. Lv, and J. Hu: Structure and photocatalytic performance of layered HNbWO6 nanosheet aggregation. J. Nanophotonics 9, 093041 (2015).

    Google Scholar 

  31. R. Jamal, Y. Osman, A. Rahman, A. Ali, Y. Zhang, and T. Abdiryim: Solid-state synthesis and photocatalytic activity of polyterthiophene derivatives/TiO2 nanocomposites. Materials 7, 3786 (2014).

    CAS  Google Scholar 

  32. M. Yang and J. He: Fine tuning of the morphology of copper oxide nanostructures and their application in ambient degradation of methylene blue. J. Colloid Interface Sci. 355, 15 (2011).

    CAS  Google Scholar 

  33. M. Khaksar, M. Amini, D.M. Boghaei, K.H. Chae, and S. Gautam: Mn-doped ZrO2 nanoparticles as an efficient catalyst for green oxidative degradation of methylene blue. Catal. Commun. 72, 1 (2015).

    CAS  Google Scholar 

  34. N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri: Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int. J. Mol. Sci. 13, 12242 (2012).

    CAS  Google Scholar 

  35. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, and V. Dal Santo: Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600 (2012).

    CAS  Google Scholar 

  36. A.J. Christy and M. Umadevi: Novel combustion method to prepare octahedral NiO nanoparticles and its photocatalytic activity. Mater. Res. Bull. 48, 4248 (2013).

    Google Scholar 

  37. S. Šegota, L. Ćurković, D. Ljubas, V. Svetličić, I.F. Houra, and N. Tomašić: Synthesis, characterization and photocatalytic properties of sol–gel TiO2 films. Ceram. Int. 37, 1153 (2011).

    Google Scholar 

  38. D. Lu, P. Fang, W. Wu, J. Ding, L. Jiang, X. Zhao, C. Li, M. Yang, Y. Li, and D. Wang: Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(VI) and rhodamine B under visible light irradiation. Nanoscale 9, 3231 (2017).

    CAS  Google Scholar 

  39. T. Kanagaraj and S. Thiripuranthagan: Photocatalytic activities of novel SrTiO3–BiOBr heterojunction catalysts towards the degradation of reactive dyes. Appl. Catal. B Environ. 207, 218 (2017).

    CAS  Google Scholar 

  40. S-J. Xia, F-X. Liu, Z-M. Ni, W. Shi, J-L. Xue, and P-P. Qian: Ti-based layered double hydroxides: Efficient photocatalysts for azo dyes degradation under visible light. Appl. Catal. B Environ. 144, 570 (2014).

    CAS  Google Scholar 

  41. Z.G. Aguilar, E. Brillas, M. Salazar, J.L. Nava, and I. Sirés: Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of Acid Yellow 36 azo dye with Ir–Sn–Sb oxide anode in the presence of iron ion. Appl. Catal. B Environ. 206, 44–52 (2017).

    CAS  Google Scholar 

  42. Y. Liu, W. Jin, Y. Zhao, G. Zhang, and W. Zhang: Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl. Catal. B Environ. 206, 642 (2017).

    CAS  Google Scholar 

  43. G. George and S. Anandhan: Photocatalytic activity of sol–gel electrospun Co3O4 nanofibers in degrading methylene blue and methyl orange. Ann mater. Sci. Eng. 2, 1025 (2015).

    Google Scholar 

  44. A.E-H. Ali, A.I. Raafat, G.A. Mahmoud, N.A. Badway, M.A. El-Mottaleb, and M.F. Elshahawy: Photocatalytic decolorization of dye effluent using radiation developed polymeric nanocomposites. J. Inorg. Organomet. Polym. Mater. 26, 606 (2016).

    CAS  Google Scholar 

  45. S. Laohaprapanon, J. Matahum, L. Tayo, and S-J. You: Photodegradation of reactive black 5 in a ZnO/UV slurry membrane reactor. J. Taiwan Inst. Chem. Eng. 49, 136 (2015).

    CAS  Google Scholar 

  46. E.K. Goharshadi, M. Hadadian, M. Karimi, and H. Azizi-Toupkanloo: Photocatalytic degradation of reactive black 5 azo dye by zinc sulfide quantum dots prepared by a sonochemical method. Mater. Sci. Semicond. Process. 16, 1109 (2013).

    CAS  Google Scholar 

  47. P. Mehta, R. Mehta, M. Surana, and B.V. Kabra: Influence of operational parameters on degradation of commercial textile azo dye acid blue 113 (cyanine 5r) by advanced oxidation technology. J. Curr. Chem. Pharm. Sci. 1, 28 (2011).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

HSN acknowledges DST-SERB project (No. SB/S2/CMP-105/2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martha Ramesh or Hosakoppa Nagaraja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, M., Rao, M.P.C., Anandan, S. et al. Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. Journal of Materials Research 33, 601–610 (2018). https://doi.org/10.1557/jmr.2018.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.30

Navigation