Skip to main content
Log in

Electrochemical and kinetic performance of amorphous/nanostructured TiNi-based intermetallic compound with Nb substitution synthesized by mechanical alloying

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The electrochemical behavior of TiNi(1−x)Nbx (x = 0, 0.05, 0.1, 0.2) ternary intermetallic compounds synthesized by mechanical alloying was investigated and compared to that of binary TiNi. The structure of 20-h milled product with initial stoichiometric composition of TiNi0.95Nb0.05 was found to be amorphous/nanostructured. Upon cycling, this ternary milled product exhibited the highest discharge capacity (166.1 mA h/g) after 10 cycles and best cycle stability (∼91%) while those of the binary TiNi were 147 mA h/g and ∼83%, respectively; i.e., slight amount of Nb substitution (0.05 mol) for Ni in the TiNi not only increased discharge capacity and cycle stability but also enhanced the kinetics of hydrogen absorption/desorption through increasing the exchange current density and hydrogen diffusion coefficient. However, additional Nb content was found to have negative effect on electrochemical properties; this was related to the existence of Nb element in addition to the ternary amorphous/nanocrystalline structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M. Tliha, C. Khaldi, S. Boussami, N. Fenineche, O. El-Kedim, H. Mathlouthi, and J. Lamloumi: Kinetic and thermodynamic studies of hydrogen storage alloys as negative electrode materials for Ni/MH batteries: A review. J. Solid State Electrochem. 18, 577 (2014).

    Article  CAS  Google Scholar 

  2. B. Guiose, F. Cuevas, B. Decamps, and A. Percheronguegan: Solid–gas and electrochemical hydrogenation properties of pseudo-binary (Ti,Zr)Ni intermetallic compounds. Int. J. Hydrogen Energy 33, 5795 (2008).

    Article  CAS  Google Scholar 

  3. H. Emami and F. Cuevas: Hydrogenation properties of shape memory Ti(Ni,Pd) compounds. Intermetallics 19, 876 (2011).

    Article  CAS  Google Scholar 

  4. H. Emami, F. Cuevas, and M. Latroche: Ti(Ni,Cu) pseudobinary compounds as efficient negative electrodes for Ni–MH batteries. J. Power Sources 265, 182 (2014).

    Article  CAS  Google Scholar 

  5. Z. Zhang, O. Elkedim, Y.Z. Ma, M. Balcerzak, and M. Jurczyk: The phase transformation and electrochemical properties of TiNi alloys with Cu substitution: Experiments and first-principle calculations. Int. J. Hydrogen Energy 42, 1444 (2017).

    Article  CAS  Google Scholar 

  6. H. Emami and F. Cuevas: Cobalt induced multi-plateau behavior in TiNi-based Ni–MH electrodes. Energy Storage Mater. 8, 189 (2016).

    Article  Google Scholar 

  7. B. Guiose, F. Cuevas, B. Décamps, E. Leroy, and A. Percheron-Guégan: Microstructural analysis of the ageing of pseudo-binary (Ti,Zr)Ni intermetallic compounds as negative electrodes of Ni–MH batteries. Electrochim. Acta 54, 2781 (2009).

    Article  CAS  Google Scholar 

  8. M. Makowiecka, E. Jankowska, I. Okonska, and M. Jurczyk: Effect of Zr additions on the electrode characteristics of nanocrystalline TiNi-type hydrogen storage alloys. J. Alloys Compd. 388, 303 (2005).

    Article  CAS  Google Scholar 

  9. B. Drenchev, T. Spassov, and D. Radev: Influence of alloying and microstructure on the electrochemical hydriding of TiNi-based ternary alloys. J. Appl. Electrochem. 38, 437 (2007).

    Article  Google Scholar 

  10. A. Szajek, M. Makowiecka, E. Jankowska, and M. Jurczyk: Electrochemical and electronic properties of nanocrystalline TiNi1−xMx (M = Mg, Mn, Zr; x = 0, 0.125, 0.25) ternary alloys. J. Alloys Compd. 403, 323 (2005).

    Article  CAS  Google Scholar 

  11. B. Drenchev and T. Spassov: Influence of B substitution for Ti and Ni on the electrochemical hydriding of TiNi. J. Alloys Compd. 474, 527 (2009).

    Article  CAS  Google Scholar 

  12. F. Cuevas, M. Latroche, and P. Ochin: Influence of polymorphism on the electrochemical properties of (Ti0.64Zr0.36) Ni alloys. J. Alloys Compd. 357, 730 (2003).

    Article  Google Scholar 

  13. M. Balcerzak: Electrochemical and structural studies on Ti–Zr–Ni and Ti–Zr–Ni–Pd alloys and composites. J. Alloys Compd. 658, 576 (2016).

    Article  CAS  Google Scholar 

  14. M. Balcerzak, M. Nowak, J. Jakubowicz, and M. Jurczyk: Electrochemical behavior of nanocrystalline TiNi doped by MWCNTs and Pd. Renewable Energy 62, 432 (2014).

    Article  CAS  Google Scholar 

  15. X.D. Li, O. Elkedim, M. Nowak, and M. Jurczyk: Characterization and first principle study of ball milled Ti–Ni with Mg doping as hydrogen storage alloy. Int. J. Hydrogen Energy 39, 9735 (2014).

    Article  CAS  Google Scholar 

  16. Z. Zlatanova, T. Spassov, G. Eggeler, and M. Spassova: Synthesis and hydriding/dehydriding properties of Mg2Ni–AB (AB = TiNi or TiFe) nanocomposites. Int. J. Hydrogen Energy 36, 7559 (2011).

    Article  CAS  Google Scholar 

  17. N.A.A. Rusman and M. Dahari: A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 41, 12108 (2016).

    Article  CAS  Google Scholar 

  18. M. Jurczyk, L. Smardz, and A. Szajek: Nanocrystalline materials for Ni–MH batteries. Mater. Sci. Eng., B 108, 67 (2004).

    Article  Google Scholar 

  19. S.F. Kashani-Bozorg, M. Mohri, and A. Ebrahimi-Purkani: Electrode properties of nanostructured and amorphous Mg1.75Nb0.25Ni compound produced by mechanical alloying. Adv. Mater. Res. 55–57, 581 (2008).

    Article  Google Scholar 

  20. M. Mohri and S.F. Kashani-Bozorg: An electrochemical investigation of nanocrystalline Mg2Nb0.25Ni0.75 compound synthesized by mechanical alloying. Int. J. Mod. Phys. B 22, 2939 (2008).

    Article  CAS  Google Scholar 

  21. C.S.S. Wang, Y.Q.Q. Lei, and Q.D.D. Wang: Effects of Nb and Pd on the electrochemical properties of a Ti–Ni hydrogen-storage electrode. J. Power Sources 70, 222 (1998).

    Article  CAS  Google Scholar 

  22. G. Hapçı Ağaoğlu and G. Orhan: Elaboration and electrochemical characterization of Mg–Ni hydrogen storage alloy electrodes for Ni/MH batteries. Int. J. Hydrogen Energy 42, 8098 (2017).

    Article  Google Scholar 

  23. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  24. S. Rousselot, D. Guay, and L. Roué: Comparative study on the structure and electrochemical hydriding properties of MgTi, Mg0.5Ni0.5Ti, and MgTi0.5Ni0.5 alloys prepared by high energy ball milling. J. Power Sources 196, 1561 (2011).

    Article  CAS  Google Scholar 

  25. X.D. Li, O. Elkedim, M. Nowak, M. Jurczyk, and R. Chassagnon: Structural characterization and electrochemical hydrogen storage properties of Ti2−xZrxNi (x = 0, 0.1, 0.2) alloys prepared by mechanical alloying. Int. J. Hydrogen Energy 38, 12126 (2013).

    Article  CAS  Google Scholar 

  26. S.M. Lee, H. Lee, J.S. Yu, G.A. Fateev, and J.Y. Lee: Activation characteristics of a Zr-based hydrogen storage alloy electrode surface-modified by ball-milling process. J. Alloys Compd. 292, 258 (1999).

    Article  CAS  Google Scholar 

  27. B. Abrashev, T. Spassov, S. Bliznakov, and A. Popov: Microstructure and electrochemical hydriding/dehydriding properties of ball-milled TiFe-based alloys. Int. J. Hydrogen Energy 35, 6332 (2010).

    Article  CAS  Google Scholar 

  28. M. Gao, S. Zhang, H. Miao, Y. Liu, and H. Pan: Pulverization mechanism of the multiphase Ti–V-based hydrogen storage electrode alloy during charge/discharge cycling. J. Alloys Compd. 489, 552 (2010).

    Article  CAS  Google Scholar 

  29. X. Zhao and L. Ma: Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int. J. Hydrogen Energy 34, 4788 (2009).

    Article  CAS  Google Scholar 

  30. X. Zhao, L. Ma, M. Yang, Y. Ding, and X. Shen: Electrochemical properties of Ti–Ni–H powders prepared by milling titanium hydride and nickel. Int. J. Hydrogen Energy 35, 3076 (2010).

    Article  CAS  Google Scholar 

  31. A. Etiemble, S. Rousselot, W. Guo, H. Idrissi, and L. Roué: Influence of Pd addition on the electrochemical performance of Mg–Ni–Ti–Al-based metal hydride for Ni–MH batteries. Int. J. Hydrogen Energy 38, 7169 (2013).

    Article  CAS  Google Scholar 

  32. C. Jiang, H. Wang, Y. Wang, X. Chen, Y. Tang, Z. Liu, and H. Xie: Enhanced electrochemical performance of Mg2Ni alloy prepared by rapid quenching in magnetic field. J. Power Sources 238, 257 (2013).

    Article  CAS  Google Scholar 

  33. M. Ma, D. Wang, X. Hu, X. Jin, and G.Z. Chen: A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys. Chem.–Eur. J. 12, 5075 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Partial financial support by Center of Excellence for Surface Engineering and Corrosion Protection of Industries, University of Tehran, and Iran Nanotechnology Initiative Council are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Farshid Kashani-Bozorg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, R., Kashani-Bozorg, S.F. Electrochemical and kinetic performance of amorphous/nanostructured TiNi-based intermetallic compound with Nb substitution synthesized by mechanical alloying. Journal of Materials Research 33, 3774–3784 (2018). https://doi.org/10.1557/jmr.2018.231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.231

Navigation