Skip to main content

Advertisement

Log in

A latent crosslinkable PCL-based polyurethane: Synthesis, shape memory, and enzymatic degradation

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Seeking a latent-crosslinkable, mechanically flexible, fully thermoplastic shape memory polymer, we have developed a simple but effective macromolecular design that includes pendent crosslinking sites via the chain extender of a polyurethane architecture bearing semicrystalline poly(ε-caprolactone) (PCL) soft segments. This new composition was used to prepare fibrous mats by electrospinning and films by solvent casting, each containing thermal initiators for chemical crosslinking. The one-step synthesis strategy proved successful, and the crosslinking sites within PCL segments resulted in two-way (reversible) shape memory: repeatable elongation (cooling) and contraction (heating) under constant tensile stress. Being fully characterized, the crosslinked fiber mats revealed promising one-way and two-way (reversible) shape memory phenomena, with lower storage moduli though, compared to uncrosslinked films. We observed for both fibrous mats and films that increasing the applied tensile stress led to greater crystallization-induced elongation upon cooling as well as smaller strain hysteresis, particularly for covalently crosslinked samples. Relevant to medical applications, the materials were observed to feature unique, two-stage enzymatic degradation that was sensitive to differences in crystallinity and microstructure among samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A. Lendlein and S. Kelch: Shape memory polymers. Angew. Chem., Int. Ed. 41, 2034 (2002).

    Article  CAS  Google Scholar 

  2. D. Ratna and J. Karger-Kocsis: Recent advances in shape memory polymers and composite: A review. J. Mater. Sci. 43, 254 (2008).

    Article  CAS  Google Scholar 

  3. C. Liu, H. Qin, and P.T. Mather: Review of progress in shape memory polymers. J. Mater. Chem. 17, 1543 (2007).

    Article  CAS  Google Scholar 

  4. T. Xie: Tunable polymer multi-shape memory effect. Nature 464, 267 (2010).

    Article  CAS  Google Scholar 

  5. K. Yu, T. Xie, J. Leng, Y. Ding, and H.J. Qi: Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers. Soft Matter 8, 5687 (2012).

    Article  CAS  Google Scholar 

  6. P.T. Mather, X. Luo, and I.A. Rousseau: Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445 (2009).

    Article  CAS  Google Scholar 

  7. J. Li, W.R. Rodgers, and T. Xie: Semi-crystalline two-way shape memory elastomer. Polymer 52, 5320 (2011).

    Article  CAS  Google Scholar 

  8. K.K. Westbrook, P.T. Mather, V. Parakh, M.L. Dunn, Q. Qi, B.M. Lee, and H.J. Qi: Two-way reversible shape memory effects in a free-standing polymer composite. Smart Mater. Struct. 20, 065010 (2011).

    Article  CAS  Google Scholar 

  9. D.K. Shenoy, D.L. Thomsen, III, A. Srinivasan, P. Keller, and B.R. Ratna: Carbon coated liquid crystal elastomer film for artificial muscle applications. Sens. Actuators, A 96, 184 (2002).

    Article  CAS  Google Scholar 

  10. J. Leng, X. Lan, Y. Liu, and S. Du: Shape memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 56, 1077 (2011).

    Article  CAS  Google Scholar 

  11. Y. Yu and T. Ikeda: Soft actuators based on liquid-crystalline elastomers. Angew. Chem., Int. Ed. 45, 5416 (2006).

    Article  CAS  Google Scholar 

  12. C. Ohm, M. Brehmer, and R. Zentel: Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366 (2010).

    Article  CAS  Google Scholar 

  13. S. Krause, F. Zander, G. Bergmann, H. Brandt, H. Wertmer, and H. Finkelmann: Nematic main-chain elastomers: Coupling and orientational behavior. C. R. Chim. 12, 85 (2009).

    Article  CAS  Google Scholar 

  14. T. Chung, A. Romo-Uribe, and P.T. Mather: Two-way reversible shape memory in a semicrystalline network. Macromolecules 41, 184 (2008).

    Article  CAS  Google Scholar 

  15. R.M. Baker, J.H. Henderson, and P.T. Mather: Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. J. Mater. Chem. B 1, 4916 (2013).

    Article  CAS  Google Scholar 

  16. M. Behl, K. Kratz, J. Zotzmann, U. Nőchel, and A. Lendlein: Reversible bidirectional shape memory polymers. Adv. Mater. 25, 4466 (2013).

    Article  CAS  Google Scholar 

  17. J. Zhou, S.A. Turner, S.M. Brosnan, Q. Li, J.Y. Carrilo, D. Nykypanchuk, O. Gang, V.S. Ashby, A.V. Dobrynin, and S.S. Sheiko: Shape-shifting: Reversible shape memory in semicrystalline elastomers. Macromolecules 47, 1768 (2014).

    Article  CAS  Google Scholar 

  18. N. Teramoto, H. Kogure, Y. Kimura, and M. Shibata: Thermal properties and biodegradability of the copolymers of L-lactide, ε-caprolactone, and ethylene glycol oligomer with maleate units and their crosslinked products. Polymer 45, 7927 (2004).

    Article  CAS  Google Scholar 

  19. P. Ping, W. Wang, X. Chen, and X. Jing: The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes. J. Polym. Sci., Part B: Polym. Phys. 45, 557 (2007).

    Article  CAS  Google Scholar 

  20. B.K. Kim and S.Y. Lee: Polyurethanes having shape memory effects. Polymer 37, 5781 (1996).

    Article  CAS  Google Scholar 

  21. A.E. Senador, Jr., M.T. Shaw, and P.T. Mather: Electrospinning of polymeric nanofibers: Analysis of jet formation. Mater. Res. Soc. Symp. Proc. 661, 5.9.1 (2001).

    Google Scholar 

  22. A. Greiner and J.H. Wendorff: Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem., Int. Ed. 46, 5670 (2007).

    Article  CAS  Google Scholar 

  23. M.M. Demir, I. Yilgor, E. Yilgor, and B. Erman: Electrospinning of polyurethane fibers. Polymer 43, 3303 (2002).

    Article  CAS  Google Scholar 

  24. G. Odian: Principles of Polymerization, 4th ed. (A John Wiley & Sons, Inc., New Jersey, 2004); p. 619.

    Book  Google Scholar 

  25. O. Gȕven: Crosslinking and Scission in Polymers (Springer, Netherlands, 1990); p. 1.

    Book  Google Scholar 

  26. P.C. Boire, M.K. Gupta, A.I.L. Zachman, S.H. Lee, D.A. Balikov, K. Kim, L.M. Bellan, and H. Sung: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications. Acta Biomater. 24, 53 (2015).

    Article  CAS  Google Scholar 

  27. M.I. Lawton, K.R. Tillman, H.S. Mohammed, W. Kuang, D.A. Shipp, and P.T. Mather: Anhydride-based reconfigurable shape memory elastomers. ACS Macro Lett. 5, 203 (2016).

    Article  CAS  Google Scholar 

  28. Z. Gan, Q. Liang, J. Zhang, and X. Jing: Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym. Degrad. Stab. 56, 209 (1997).

    Article  CAS  Google Scholar 

  29. J. Zeng, X. Chen, Q. Liang, X. Xu, and X. Jing: Enzymatic degradation of poly(L-lactide) and poly(ε-caprolactone) electrospun fibers. Macromol. Biosci. 4, 1118 (2004).

    Article  CAS  Google Scholar 

  30. X. Gu, J. Wu, and P.T. Mather: Polyhedral oligomeric silsesquioxane (POSS) suppresses enzymatic degradation of PCL-based polyurethanes. Biomacromolecules 12, 3066 (2011).

    Article  CAS  Google Scholar 

  31. X. Luo and P.T. Mather: Preparation and characterization of shape memory elastomeric composites. Macromolecules 42, 7251 (2009).

    Article  CAS  Google Scholar 

  32. J.M. Robertson, H.B. Nejad, and P.T. Mather: Dual-spun shape memory elastomeric composites. ACS Macro Lett. 4, 436 (2015).

    Article  CAS  Google Scholar 

  33. K.A. Burke, I.A. Rousseau, and P.T. Mather: Reversible actuation in main-chain liquid crystalline elastomers with varying crosslink densities. Polymer 55, 5897 (2014).

    Article  CAS  Google Scholar 

  34. M.A. Rice, J. Samchez-Adams, and K.S. Anseth: Exogenously triggered, enzymatic degradation of photopolymerized hydrogels with polycaprolactone subunits: Experimental observation and modeling of mass loss behavior. Biomacromolecules 7, 1968 (2006).

    Article  CAS  Google Scholar 

  35. V.P. Saraf, W.G. Glasser, G.L. Wilkes, and J.E. McGrath: Structure-property relationships of PEG-containing polyurethane networks. J. Appl. Polym. Sci. 30, 2207 (1985).

    Article  CAS  Google Scholar 

  36. E. McMullin, H.T. Rebar, and P.T. Mather: Biodegradable thermoplastic elastomers incorporating POSS: Synthesis, microstructure, and mechanical properties. Macromolecules 49, 3769 (2016).

    Article  CAS  Google Scholar 

  37. A. Valério, D.S. Conti, P.H.H. Araújo, C. Sayer, and S.R.P. da Rocha: Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloids Surf., B 135, 35 (2015).

    Article  CAS  Google Scholar 

  38. B.S. Lee, B.C. Chun, Y.C. Chung, K.I. Sul, and J.W. Cho: Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34, 6431 (2001).

    Article  CAS  Google Scholar 

  39. M. Ahmad, B. Xu, H. Purnawali, Y. Fu, W. Huang, M. Miraftab, and J. Luo: High performance shape memory polyurethane synthesized with high molecular weight polyol as the soft segment. Appl. Sci. 2, 535 (2012).

    Article  CAS  Google Scholar 

  40. N. Barkoula, T. Peijs, T. Schimanski, and J. Loos: Processing of single polymer composites using the concept of constrained fibers. Polym. Compos. 26, 114 (2005).

    Article  CAS  Google Scholar 

  41. N.K. Kim, S. Fakirov, and D. Bhattacharyya: Polymer–polymer and single polymer composites involving nanofibrillar poly(vinylidene fluoride): Manufacturing and mechanical properties. J. Macromol. Sci., Part B: Phys. 53, 1168 (2014).

    Article  CAS  Google Scholar 

  42. S. Jiang, C. He, Y. Men, X. Chen, L. An, S.S. Funari, and C. Chan: Study of temperature dependence of crystallization transitions of a symmetric PEO–PCL diblock copolymer using simultaneous SAXS and WAXS measurements with synchrotron radiation. Eur. Phys. J. E: Soft Matter Biol. Phys. 27, 357 (2008).

    Article  CAS  Google Scholar 

  43. M. Krumova, D. López, R. Benavente, C. Mijangos, and J.M. Pereňa: Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer 41, 9265 (2000).

    Article  CAS  Google Scholar 

  44. J. Park, Q. Ye, E.M. Topp, C.H. Lee, E.L. Kostoryz, A. Misra, and P. Spencer: Dynamic mechanical analysis and esterase degradation of dentin adhesives containing a branched methacrylate. J. Biomed. Mater. Res., Part B 91, 61 (2009).

    Article  CAS  Google Scholar 

  45. L. Song, Q. Ye, X. Ge, A. Misra, J.S. Laurence, C.L. Berrie, and P. Spencer: Synthesis and evaluation of novel dental monomer with branched carboxyl acid group. J. Biomed. Mater. Res., Part B 102, 1473 (2014).

    Article  CAS  Google Scholar 

  46. C. Liu, S.B. Chun, and P.T. Mather: Chemically cross-linked polycyclooctene: Synthesis, characterization, and shape memory behavior. Macromolecules 35, 9868 (2002).

    Article  CAS  Google Scholar 

  47. L.S. Nair and C.T. Laurencin: Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762 (2007).

    Article  CAS  Google Scholar 

  48. E.M. Christenson, S. Patel, J.M. Anderson, and A. Hiltner: Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase. Biomaterials 27, 3920 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

We gratefully acknowledge the funding for this work under NSF EFRI-1435452.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Mather.

Supplementary Material

43578_2018_33172463_MOESM1_ESM.docx

A Latent Crosslinkable PCL-based Polyurethane: Synthesis, Shape Memory, and Enzymatic Degradation (approximately 3.21 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, W., Mather, P.T. A latent crosslinkable PCL-based polyurethane: Synthesis, shape memory, and enzymatic degradation. Journal of Materials Research 33, 2463–2476 (2018). https://doi.org/10.1557/jmr.2018.220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.220

Navigation