Skip to main content
Log in

Correlation between the atomic configurations and the amorphous-to-icosahedral phase transition in metallic glasses

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Positron annihilation spectroscopy and differential scanning calorimetry were used to evaluate the changes of the atomic configurations in Zr-based metallic glasses (MGs) due to alloying and plastic deformation. The correlation between the atomic configurations of MGs and the amorphous-to-icosahedral phase transition due to heating was investigated. The results indicate that the free volume frozen in the as-cast Zr60Al15Ni25, Zr65Al7.5Ni10Cu17.5, and Zr65Al7.5Ni10Cu17.5Ag5 MGs substantially decreases in sequence. More excess free volume is introduced in Zr65Al7.5Ni10Cu17.5Ag5 MG due to cold rolling and milling. The annihilation of free volume due to alloying considerably stabilizes the icosahedral structure of MGs, which enhances the nucleation and growth of quasicrystals upon heating. However, the nucleation and growth of quasicrystals are considerably suppressed in Zr65Al7.5Ni10Cu17.5Ag5 MG due to cold rolling and milling, during which the more introduced excess free volume results in substantial destruction of short-range order with 5-fold symmetry. The present work further provides direct evidence for the prevalence of icosahedral short-range order in MGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984).

    Article  CAS  Google Scholar 

  2. L.C. Chen and F. Spaepen: Calorimetric evidence for the micro-quasicrystalline structure of ‘amorphous’ Al/transition metal alloys. Nature 336, 366 (1988).

    Article  CAS  Google Scholar 

  3. J. Saida, M. Matsushita, T. Zhang, A. Inoue, M.W. Chen, and T. Sakurai: Precipitation of icosahedral phase from a supercooled liquid region in Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. Appl. Phys. Lett. 75, 3497 (1999).

    Article  CAS  Google Scholar 

  4. G.W. Lee, A.K. Gangopadhyay, and K.F. Kelton: Phase diagram studies of Ti–Zr–Ni alloys containing less than 40 at.% Ni and estimated critical cooling rate for icosahedral quasicrystal formation from the liquid. Acta Mater. 59, 4964 (2011).

    Article  CAS  Google Scholar 

  5. W.K. Luo, H.W. Sheng, F.M. Alamgir, J.M. Bai, J.H. He, and E. Ma: Icosahedral short-range order in amorphous alloys. Phys. Rev. Lett. 92, 145502 (2004).

    Article  CAS  Google Scholar 

  6. X.J. Liu, G.L. Chen, X. Hui, T. Liu, and Z.P. Lu: Ordered clusters and free volume in a Zr–Ni metallic glass. Appl. Phys. Lett. 93, 011911 (2008).

    Article  CAS  Google Scholar 

  7. Y.T. Shen, T.H. Kim, A.K. Gangopadhyay, and K.F. Kelton: Icosahedral order, frustration, and the glass transition: Evidence from time-dependent nucleation and supercooled liquid structure studies. Phys. Rev. Lett. 102, 057801 (2009).

    Article  CAS  Google Scholar 

  8. Y.F. Zhao, D.Y. Lin, X.H. Chen, Z.K. Liu, and X.D. Hui: Sluggish mobility and strong icosahedral ordering in Mg–Zn–Ca liquid and glassy alloys. Acta Mater. 67, 266 (2014).

    Article  CAS  Google Scholar 

  9. M.W. Chen, T. Zhang, A. Inoue, A. Sakai, and T. Sakurai: Quasicrystals in a partially devitrified Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Appl. Phys. Lett. 75, 1697 (1999).

    Article  CAS  Google Scholar 

  10. A. Inoue, T. Zhang, J. Saida, M. Matsushita, M.W. Chen, and T. Sakurai: Formation of icosahedral quasicrystalline phase in Zr–Al–Ni–Cu–M (M = Ag, Pd, Au or Pt) systems. Mater. Trans., JIM 40, 1181 (1999).

    Article  CAS  Google Scholar 

  11. D.V. Louzguine and A. Inoue: Nanoparticles with icosahedral symmetry in Cu-based bulk glass former induced by Pd addition. Scr. Mater. 48, 1325 (2003).

    Article  CAS  Google Scholar 

  12. Z. Wang, S.V. Ketov, C.L. Chen, Y. Shen, Y. Ikuhara, A.A. Tsarkov, D.V. Louzguine-Luzgin, and J.H. Perepezko: Nucleation and thermal stability of an icosahedral nanophase during the early crystallization stage in Zr–Co–Cu–Al metallic glasses. Acta Mater. 132, 298 (2017).

    Article  CAS  Google Scholar 

  13. U. Kühn, K. Eymann, N. Mattern, J. Eckert, A. Gebert, B. Bartusch, and L. Schultz: Limited quasicrystal formation in Zr–Ti–Cu–Ni–Al bulk metallic glasses. Acta Mater. 54, 4685 (2006).

    Article  CAS  Google Scholar 

  14. G.W. Lee, A.K. Gangopadhyay, and K.F. Kelton: Effect of microalloying on the formation and stability of the Ti–Zr–Ni icosahedral quasicrystal. J. Alloys Compd. 537, 171 (2012).

    Article  CAS  Google Scholar 

  15. J. Saida, R. Yamada, P. Kozikowski, M. Imafuku, S. Sato, and M. Ohnuma: Characterization of nano-quasicrystal-formation in correlation to the local structure in Zr-based metallic glasses containing Pd. J. Alloys Compd. 707, 46 (2017).

    Article  CAS  Google Scholar 

  16. J. Saida, A.D. Setyawan, and E. Matsubara: Effect of relaxation state on nucleation and grain growth of nanoscale quasicrystal in Zr-based bulk metallic glasses prepared under various cooling rates. Appl. Phys. Lett. 99, 061903 (2011).

    Article  CAS  Google Scholar 

  17. Z.J. Yan, K.K. Song, Y. Hu, F.P. Dai, Z.B. Chu, and J. Eckert: Localized crystallization in shear bands of a metallic glass. Sci. Rep. 6, 19358 (2016).

    Article  CAS  Google Scholar 

  18. F. Hori, A. Ishii, T. Ishiyama, A. Iwase, Y. Yokoyama, and T.J. Konno: Composition dependence of open-volume relaxation in Zr–Cu–Al bulk amorphous alloys studied by positron annihilation. J. Alloys Compd. 707, 73 (2017).

    Article  CAS  Google Scholar 

  19. C. Nagel, K. Rätzke, E. Schmidtke, F. Faupel, and W. Ulfert: Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr65Al7.5Ni10Cu17.5 during structural relaxation and at the glass transition. Phys. Rev. B 60, 9212 (1999).

    Article  CAS  Google Scholar 

  20. B.P. Kanungo, S.C. Glade, P. Asoka-Kumar, and K.M. Flores: Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses. Intermetallics 12, 1073 (2004).

    Article  CAS  Google Scholar 

  21. F.Y. Dong, Y.Q. Su, L.S. Luo, J.J. Guo, H.Z. Fu, Z.X. Li, and B.Y. Wang: Characterization of hydrogen-induced structural changes in Zr-based bulk metallic glasses using positron annihilation spectroscopy. J. Mater. Res. 27, 2587 (2012).

    Article  CAS  Google Scholar 

  22. Z. Evenson, T. Koschine, S. Wei, O. Gross, J. Bednarčik, I. Gallino, J.J. Kruzic, K. Rätzke, F. Faupel, and R. Busch: The effect of low-temperature structural relaxation on free volume and chemical short-range ordering in a Au49Cu26.9Si16.3Ag5.5Pd2.3 bulk metallic glass. Scr. Mater. 103, 14 (2015).

    Article  CAS  Google Scholar 

  23. K. Filipečka, R. Pawlik, and J. Filipečki: The effect of annealing on magnetic properties, phase structure and evolution of free volumes in Pr–Fe–B–W metallic glasses. J. Alloys Compd. 694, 228 (2017).

    Article  CAS  Google Scholar 

  24. A. Slipenyuk and J. Eckert: Correlation between enthalpy change and free volume reduction during structural relaxation Zr55Cu30Al10Ni5 metallic glass. Scr. Mater. 50, 39 (2004).

    Article  CAS  Google Scholar 

  25. Y.L. Xu, J.X. Fang, H. Gleiter, H. Hahn, and J.G. Li: Quantitative determination of free volume in Pd40Ni40P20 bulk metallic glass. Scr. Mater. 62, 674 (2010).

    Article  CAS  Google Scholar 

  26. Z.J. Yan, J. Yan, L.F. Tuo, Y. Hu, and S.E. Deng: Microstructure evolution of Zr60Al15Ni25 bulk metallic glass subjected to rolling at room temperature. J. Alloys Compd. 504S, S251 (2010).

    Article  Google Scholar 

  27. U. Köster, J. Meinhardt, S. Roos, and H. Liebertz: Formation of quasicrystals in bulk glass forming Zr–Cu–Ni–Al alloys. Appl. Phys. Lett. 69, 179 (1996).

    Article  Google Scholar 

  28. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).

    Article  CAS  Google Scholar 

  29. A. Hirata, P.F. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A.R. Yavari, T. Sakurai, and M.W. Chen: Direct observation of local order in a metallic glasses. Nat. Mater. 10, 28 (2011).

    Article  CAS  Google Scholar 

  30. X.W. Fang, C.Z. Wang, S.G. Hao, M.J. Kramer, Y.X. Yao, M.I. Mendelev, Z.J. Ding, R.E. Napolitano, and K.M. Ho: Spatially resolved distribution function and the medium-range order in metallic liquid and glass. Sci. Rep. 1, 194 (2011).

    Article  CAS  Google Scholar 

  31. J.D. Bernal: Geometry of the structure of monatomic liquids. Nature 185, 68 (1960).

    Article  Google Scholar 

  32. D.S. Boudreaux and H.J. Frost: Short-range order in theoretical models of binary metallic glass alloys. Phys. Rev. B 28, 1506 (1981).

    Article  Google Scholar 

  33. F.C. Frank: Supercooling of liquids. Proc. R. Soc. London, Ser. A 215, 43 (1952).

    Article  CAS  Google Scholar 

  34. J.F. Sadoc: Use of regular polytopes for the mathematical description of the order in amorphous structures. J. Non-Cryst. Solids 44, 1 (1981).

    Article  CAS  Google Scholar 

  35. Y.Q. Cheng and E. Ma: Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 56, 379 (2011).

    Article  CAS  Google Scholar 

  36. T. Fujita, K. Konno, W. Zhang, V. Kumar, M. Matsuura, A. Inoue, T. Sakurai, and M.W. Chen: Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett. 103, 075502 (2009).

    Article  CAS  Google Scholar 

  37. A. Hirata, L.J. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, A.R. Yavari, and M.W. Chen: Geometric frustration of icosahedron in metallic glasses. Science 341, 376 (2013).

    Article  CAS  Google Scholar 

  38. A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, and Å. Kvick: Excess free volume in metallic glasses measured by X-ray diffraction. Acta Mater. 53, 1611 (2005).

    Article  CAS  Google Scholar 

  39. D.R. Nelson: Order, frustration, and defects in liquids and glasses. Phys. Rev. B 28, 5515 (1983).

    Article  CAS  Google Scholar 

  40. K. Saksl, H. Franz, P. Jóvári, K. Klementiev, E. Welter, A. Ehnes, J. Saida, A. Inoue, and J.Z. Jiang: Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pd1 metallic glasses. Appl. Phys. Lett. 83, 3924 (2003).

    Article  CAS  Google Scholar 

  41. Y. Ritter and K. Albe: Thermal annealing of shear bands in deformed metallic glasses: Recovery mechanisms in Cu64Zr36 studied by molecular dynamics simulations. Acta Mater. 59, 7082 (2011).

    Article  CAS  Google Scholar 

  42. Y. Zhang, N. Mattern, and J. Eckert: Effect of uniaxial loading on the structural anisotropy and the dynamics of atoms of Cu50Zr50 metallic glasses within the elastic regime studied by molecular dynamics simulation. Acta Mater. 59, 4303 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51561001, 51441004, and 51204118), the Program for Excellent Talents of Shanxi Province, China (2010), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (2014), the Research Project of the Shanxi Scholarship Council of China (2015-87), and the “131” Leading Talent Project of Universities in Shanxi Province (2015). Additional support by the German Science Foundation under the Leibniz Program (Grant No. EC 111/26-1) and the ERC Advanced Grant “INTELHYB — Next Generation of Complex Metallic Materials in Intelligent Hybrid Structures” (Grant No. ERC-2013-ADG-340025) is gratefully acknowledged. Z.Y. would like to express appreciation to Dr. X.P. Hao and B.Y. Wang (Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Science) for their kind help with the PAS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijie Yan.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, G., Yan, Z., Hu, Y. et al. Correlation between the atomic configurations and the amorphous-to-icosahedral phase transition in metallic glasses. Journal of Materials Research 33, 2775–2783 (2018). https://doi.org/10.1557/jmr.2018.187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.187

Navigation