Skip to main content
Log in

Microstructure evolution and mechanical properties of Mg–10Gd–3Y–x Zn–0.6Zr alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructure evolution and mechanical properties of Mg–10Gd–3Y–x Zn–0.6Zr ( x = 0.5, 1, and 1.5 wt%) alloys in the as-cast, solution-treated, and peak-aged conditions have been investigated systematically. The results indicate that the microstructure of the as-cast alloy with 0.5% Zn consists of α-Mg, (Mg,Zn)3RE and Mg24(RE,Zn)5 phases, while the alloy with 1.0 and 1.5% Zn consists of α-Mg, (Mg,Zn)3RE and some stacking faults. Moreover, 18R-LPSO phases are observed in the as-cast alloy with 1.5% Zn. The formation of LPSO phases involves not only stacking sequence ordered but also chemical composition ordered. After solution treatment, the Mg24(RE,Zn)5, (Mg,Zn)3RE, stacking faults, and 18R-LPSO phases transform into 14H-LPSO phases. The 14H-LPSO phase plays an important role in the improvement of mechanical properties, especially for the ductility. The β′ phase with a bco structure precipitates in the peak-aged alloys results in precipitation hardening, significantly improving the tensile strength, but it leads to poor ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. L. Zheng, C.M. Liu, Y.C. Wan, P.W. Yang, and X. Shu: Microstructures and mechanical properties of Mg–10Gd–6Y–2Zn–0.6Zr (wt.%) alloy. J. Alloys Compd. 509, 8832 (2011).

    Article  CAS  Google Scholar 

  2. A.A. Luo: Recent magnesium alloy development for elevated temperature applications. J. Mater. Sci. 1, 2 (2013).

    CAS  Google Scholar 

  3. K. Hono, C.L. Mendis, T.T. Sasaki, and K. Oh-ishi: Towards the development of heat-treatable high-strength wrought Mg alloys. Scr. Mater. 63, 710 (2010).

    Article  CAS  Google Scholar 

  4. D.G.L. Prakash, D. Regener, and W.J.J. Vorster: Effect of position on the tensile properties in high-pressure die cast Mg alloy. J. Alloys Compd. 470, 111 (2009).

    Article  Google Scholar 

  5. S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton, and T.B. Abbott: Microstructural analysis of the creep resistance of die-cast Mg–4Al–2RE alloy. Scr. Mater. 58, 477 (2008).

    Article  CAS  Google Scholar 

  6. J. Wang, J. Meng, D.P. Zhang, and D.X. Tang: Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Mater. Sci. Eng., A 456, 78 (2007).

    Article  Google Scholar 

  7. H.R. Jafari Nodooshan, W.C. Liu, G.H. Wu, R. Alizadeh, R. Mahmudi, and W.J. Ding: Microstructure characterization and high-temperature shear strength of the Mg–10Gd–3Y–1.2Zn–0.5Zr alloy in the as-cast and aged conditions. J. Alloys Compd. 619, 826 (2015).

    Article  Google Scholar 

  8. M. Matsuda, S. Li, and Y. Kawamura: Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Mater. Sci. Eng., A 393, 269 (2005).

    Article  Google Scholar 

  9. Y. Chino, M. Mabuchi, S. Hagiwara, H. Iwasaki, A. Yamamoto, and H. Tsubakino: Novel equilibrium two phase Mg alloy with the long-period ordered structure. Scr. Mater. 51, 711 (2004).

    Article  CAS  Google Scholar 

  10. M. Nishida, Y. Kawamura, and T. Yamamuro: Formation process of unique microstructure in rapidly solidified Mg97Zn1Y2 alloy. Mater. Sci. Eng., A 375–377, 1217 (2004).

    Article  Google Scholar 

  11. Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto: Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa. Mater. Trans. 42, 1171 (2001).

    Google Scholar 

  12. C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, and X.Y. Lv: Ultra high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by large-strain hot rolling and ageing. Mater. Sci. Eng., A 547, 93 (2012).

    Article  CAS  Google Scholar 

  13. L. Zheng, C.M. Liu, and Y.C. Wang: Microstructures and mechanical properties of Mg–10Gd–6Y–2Zn–0.6Zr (wt.%) alloy. J. Alloys Compd. 509, 8832 (2011).

    Article  CAS  Google Scholar 

  14. M. Suzuki, T. Kimura, J. Koike, and K. Maruyama: Effects of zinc on creep strength and deformation substructures in Mg–Y alloy. Mater. Sci. Eng., A 387–389, 706 (2004).

    Article  Google Scholar 

  15. M. Suzuki, T. Kimura, J. Koike, and K. Maruyama: Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys. Scr. Mater. 48, 997 (2003).

    Article  CAS  Google Scholar 

  16. H. Liu, J. Bai, K. Yan, J.L. Yan, A.B. Ma, and J.H. Jiang: Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg–Y–Zn alloys during annealing at 773 K. Mater. Des. 93, 9 (2016).

    Article  CAS  Google Scholar 

  17. Y.M. Zhu, A.J. Morton, and J.F. Nie: The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys. Acta Mater. 58, 2936 (2010).

    Article  CAS  Google Scholar 

  18. S. Huang, J.F. Wang, F. Hou, X.H. Huang, and F.S. Pan: Effect of Gd and Y contents on the microstructural evolution of long period stacking ordered phase and the corresponding mechanical properties in Mg–Gd–Y–Zn–Mn alloys. Mater. Sci. Eng., A 612, 363 (2014).

    Article  CAS  Google Scholar 

  19. Y.L. Li, G.H. Wu, A.T. Chen, H.R.J. Nodooshan, W.C. Liu, Y.X. Wang, and W.J. Ding: Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting. J. Mater. Res. 30, 3461 (2015).

    Article  CAS  Google Scholar 

  20. Q. Chen, D.Y. Shu, Z.D. Zhao, Z.X. Zhao, Y.B. Wang, and B.G. Yuan: Microstructure development and tensile mechanical properties of Mg–Zn–RE–Zr magnesium alloy. Mater. Des. 40, 488 (2012).

    Article  CAS  Google Scholar 

  21. P. Cheng, Y.H. Zhao, R.P. Lu, H. Hou, Z.Q. Bu, and F. Yan: Effect of Ti addition on the microstructure and mechanical properties of cast Mg–Gd–Y–Zn alloys. Mater. Sci. Eng., A 708, 482 (2017).

    Article  CAS  Google Scholar 

  22. M. Yamasaki, M. Nishijima, M. Sasaki, K. Hiraga, and Y. Kawamura: Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature. Acta Mater. 55, 6798 (2007).

    Article  CAS  Google Scholar 

  23. C. Xu, M.Y. Zheng, K. Wu, E.D. Wang, G.H. Fan, S.W. Xu, S. Kamado, X.D. Liu, G.J. Wang, and X.Y. Lv: Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg–Gd–Y–Zn–Zr alloy. Mater. Sci. Eng., A 559, 364 (2013).

    Article  CAS  Google Scholar 

  24. M. Li, K. Zhang, Z.W. Du, X.G. Li, Y.J. Li, M.L. Ma, G.L. Shi, J.W. Yuan, T. Li, and J.B. Liu: The effect of homogenization on microstructures and mechanical properties of Mg–7Gd–3Y–1Nd–x Zn–0.5Zr ( x = 0.5, 1, and 2 wt%) alloys. Mater. Charact. 109, 66 (2015).

    Article  CAS  Google Scholar 

  25. T. Honma, T. Ohkubo, S. Kamado, and K. Hono: Effect of Zn additions on the agehardening of Mg–2.0Gd–1.2Y–0.2Zr alloys. Acta Mater. 55, 4137 (2007).

    Article  CAS  Google Scholar 

  26. E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue: Long-period ordered structure in a high-strength nanocrystalline Mg–1 at.% Zn–2 at.% Y alloy studied by atomic-resolution-contrast STEM. Acta Mater. 50, 3845 (2002).

    Article  CAS  Google Scholar 

  27. Y.J. Wu, D.L. Lin, X.Q. Zeng, L.M. Peng, and W.J. Ding: Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg–Gd–Zn–Zr alloy. J. Mater. Sci. 44, 1607 (2009).

    Article  CAS  Google Scholar 

  28. Y.J. Wu, X.Q. Zeng, D.L. Lin, L.M. Peng, and W.J. Ding: The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773 K. J. Alloys Compd. 477, 193 (2009).

    Article  CAS  Google Scholar 

  29. X.L. Zhang, Z.H. Wang, W.B. Du, K. Liu, and S.B. Li: Microstructures and mechanical properties of Mg–13Gd–5Er–1Zn–0.3Zr alloy. Mater. Des. 58, 277 (2014).

    Article  CAS  Google Scholar 

  30. J.F. Wang, P.F. Song, S. Huang, and F.S. Pan: High-strength and good-ductility Mg–RE–Zn–Mn magnesium alloy with long-period stacking ordered phase. Mater. Lett. 93, 415 (2013).

    Article  CAS  Google Scholar 

  31. J.E. Saal and C. Wolverton: Thermodynamic stability of Mg–Y–Zn long-period stacking ordered structures. Scr. Mater. 67, 798 (2012).

    Article  CAS  Google Scholar 

  32. S. Iikubo, K. Matsuda, and H. Ohtani: Phase stability of long-period stacking structures in Mg–Y–Zn: A first-principles study. Phys. Rev. B 86, 054105 (2012).

    Article  Google Scholar 

  33. Y.M. Zhu, A.J. Morton, and J.F. Nie: Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 60, 6562 (2012).

    Article  CAS  Google Scholar 

  34. J. Wang, P. Song, S. Gao, X. Huang, Z. Shi, and F. Pan: Effects of Zn on the microstructure, mechanical properties, and damping capacity of Mg–Zn–Y–Zr alloys. Mater. Sci. Eng., A 528, 5914 (2011).

    Article  CAS  Google Scholar 

  35. D.K. Xu, L. Liu, Y.B. Xu, and E.H. Han: Effect of microstructure and texture on the mechanical properties of the as-extruded Mg–Zn–Y–Zr alloys. Mater. Sci. Eng., A 443, 248 (2007).

    Article  Google Scholar 

  36. D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han: Effect of W-phase on the mechanical properties of as-cast Mg–Zn–Y–Zr alloys. J. Alloys Compd. 461, 248 (2008).

    Article  CAS  Google Scholar 

  37. X.H. Shao, Z.Q. Yang, and X.L. Ma: Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater. 58, 4760 (2010).

    Article  CAS  Google Scholar 

  38. X.Z. Han, W.C. Xu, and D.B. Shan: Effect of precipitates on microstructures and properties of forged Mg–10Gd–2Y–0.5Zn–0.3Zr alloy during ageing process. J. Alloys Compd. 509, 8625 (2011).

    Article  CAS  Google Scholar 

  39. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Deformation behaviour of γ″ strengthened inconel 718. Acta Mater. 36, 847 (1988).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Nos. 51774254, 51774253, 51701187, U1610123, 51674226, 51574207, and 51574206), The Science and Technology Major Project of Shanxi Province (No. MC2016-06), and Shanxi Province Science Foundation for Youths (No. 201601D021062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Zhao, Y., Lu, R. et al. Microstructure evolution and mechanical properties of Mg–10Gd–3Y–x Zn–0.6Zr alloys. Journal of Materials Research 33, 1797–1805 (2018). https://doi.org/10.1557/jmr.2018.100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.100

Navigation