Skip to main content
Log in

Effect of Si content on the microstructure and properties of Al–Si alloys fabricated using hot extrusion

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Al–(12, 20, 35 wt%)Si alloys were fabricated using powder metallurgy process involving hot pressing followed by hot extrusion. The effect of Si content on the microstructure [by scanning electron microscopy], the mechanical properties (hardness and tensile tests), and the thermal expansion behavior were studied in detail, respectively. Due to the friction between the Si phase and the matrix, as well as the diffusion of the Si atoms, the Si phase becomes a particulate shape after hot extrusion, and the size increases with increasing Si content. The mechanical strength increases, whereas, the elongation decreases with increasing the Si content from 12 to 35 wt%, which lead to a variation of the fracture mechanism from ductile to brittle failure. The coefficient of thermal expansion (CTE) decreases with increasing Si content as a result of restriction of Si on the Al matrix, and the measured CTE value is in good agreement with the Turner model below 573 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. G. Chirita, I. Stefanescu, D. Soares, and F.S. Silva: Influence of vibration on the solidification behaviour and tensile properties of an Al–18 wt% Si alloy. Mater. Des. 30, 1575 (2009).

    Article  CAS  Google Scholar 

  2. R.J. Immanuel and S.K. Panigrahi: Influence of cryorolling on microstructure and mechanical properties of a cast hypoeutectic Al–Si alloy. Mater. Sci. Eng., A 640, 424 (2015).

    Article  CAS  Google Scholar 

  3. S.P. Nikanorov, M.P. Volkov, V.N. Gurin, Y.A. Burenkov, L.I. Derkachenko, B.K. Kardashev, L.L. Regel, and W.R. Wilcox: Structural and mechanical properties of Al–Si alloys obtained by fast cooling of a levitated melt. Mater. Sci. Eng., A 390, 63 (2005).

    Article  Google Scholar 

  4. Z. Cai, R. Wang, C. Zhang, C. Peng, and L. Wang: Microstructure and properties of Al/Sip composites for thermal management applications. J. Mater. Sci.: Mater. Electron. 26, 4234 (2015).

    CAS  Google Scholar 

  5. S.C. Hogg, A. Lambourne, A. Ogilvy, and P.S. Grant: Microstructural characterisation of spray formed Si–30Al for thermal management applications. Scr. Mater. 55, 111 (2006).

    Article  CAS  Google Scholar 

  6. Z. Cai, R. Wang, C. Zhang, C. Peng, Y. Feng, and L. Wang: Thermal cycling reliability of Al/50Sip composite for thermal management in electronic packaging. J. Mater. Sci.: Mater. Electron. 26, 4894 (2015).

    CAS  Google Scholar 

  7. K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, and J. Eckert: Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng., A 590, 153 (2014).

    Article  CAS  Google Scholar 

  8. P. Ma, K.G. Prashanth, S. Scudino, Y.D. Jia, H.W. Wang, C.M. Zou, Z.J. Wei, and J. Eckert: Influence of annealing on mechanical properties of Al–20Si processed by selective laser melting. Metals 1, 28 (2014).

    Article  Google Scholar 

  9. Y. Birol: Grain refinement of pure aluminium and Al–7Si with Al–3B master alloy. Mater. Sci. Technol. 28, 363 (2012).

    Article  CAS  Google Scholar 

  10. S.A. Kori, B.S. Murty, and M. Chakraborty: Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium. Mater. Sci. Eng., A 283, 94 (2000).

    Article  Google Scholar 

  11. Q.L. Li, T.D. Xia, Y.F. Lan, W.J. Zhao, L. Fan, and P.F. Li: Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al–20% Si alloy. J. Alloys Compd. 562, 25 (2013).

    Article  CAS  Google Scholar 

  12. C.L. Xu and Q.C. Jiang: Morphologies of primary silicon in hypereutectic Al–Si alloys with melt overheating temperature and cooling rate. Mater. Sci. Eng., A 437, 451 (2006).

    Article  Google Scholar 

  13. K.G. Prashanth, S. Scudino, and J. Eckert: Defining the tensile properties of Al–12Si parts produced by selective laser melting. Acta Mater. 126, 25 (2017).

    Article  CAS  Google Scholar 

  14. A.G. Rao, B.R.K. Rao, V.P. Deshmukh, A.K. Shah, and B.P. Kashyap: Microstructural refinement of a cast hypereutectic Al–30Si alloy by friction stir processing. Mater. Lett. 63, 2628 (2009).

    Article  CAS  Google Scholar 

  15. W. Yu and J.K. Yu: Silicon dissolution and interfacial characteristics in Si/Al composites fabricated by gas pressure infiltration. Mater. Chem. Phys. 139, 783 (2013).

    Article  CAS  Google Scholar 

  16. Y. Chen and D.D. Chung: Silicon–aluminum network composites fabricated by liquid metal infiltration. J. Mater. Sci. 29, 6069 (1994).

    Article  CAS  Google Scholar 

  17. Y.D. Jia, F.Y. Cao, S. Scudino, P. Ma, H.C. Li, L. Yu, J. Eckert, and J.F. Sun: Microstructure and thermal expansion behavior of spray-deposited Al–50Si. Mater. Des. 57, 585 (2014).

    Article  CAS  Google Scholar 

  18. C. Cui, A. Schulz, K. Schimanski, and H.W. Zoch: Spray forming of hypereutectic Al–Si alloys. J. Mater. Process. Technol. 209, 5220 (2009).

    Article  CAS  Google Scholar 

  19. Y.Q. Liu, S.H. Wei, J.Z. Fan, Z.L. Ma, and T. Zuo: Mechanical properties of a low-thermal expansion aluminum/silicon composite produced by powder metallurgy. J. Mater. Sci. Technol. 30, 417 (2014).

    Article  CAS  Google Scholar 

  20. H. Neubing, J. Gradl, and H. Danninger: Sintering and microstructure of Al–Si P/M components. Adv. Powder Metall. Part. Mater. 13, 13 (2002).

    Google Scholar 

  21. Z. Wang, K.G. Prashanth, A.K. Chaubey, L. Löber, F.P. Schmansky, F. Pyczak, W.W. Zhang, S. Scudino, and J. Eckert: Tensile properties of Al–12Si matrix composites reinforced with Ti–Al based particles. J. Alloys Compd. 630, 256 (2015).

    Article  CAS  Google Scholar 

  22. K.G. Prashanth, B. Debalina, Z. Wang, P.F. Gostin, A. Gebert, M. Calin, U. Kühn, M. Kamaraj, S. Scudino, and J. Eckert: Tribological and corrosion properties of Al–12Si produced by selective laser melting. J. Mater. Res. 29, 2044 (2014).

    Article  CAS  Google Scholar 

  23. J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty: Simultaneous enhancements of strength and toughness in an Al–12Si alloys synthesized using selective laser melting. Acta Mater. 115, 285 (2016).

    Article  CAS  Google Scholar 

  24. K.G. Prashanth, R. Damodaram, S. Scudino, Z. Wang, K. Prasad Rao, and J. Eckert: Friction welding of Al–12Si parts produced by selective laser melting. Mater. Des. 57, 632 (2014).

    Article  CAS  Google Scholar 

  25. L. Liu, A.M. Samuel, F.H. Samuel, H.W. Doty, and S. Valtierra: Influence of oxides on porosity formation in Sr-treated Al–Si casting alloys. J. Mater. Sci. 38, 1255 (2003).

    Article  CAS  Google Scholar 

  26. X.R. Liu, Y.D. Zhang, B. Beausir, F. Liu, C. Esling, F.X. Yu, X. Zhao, and L. Zuo: Twin-controlled growth of eutectic Si in unmodified and Sr-modified Al–12.7% Si alloys investigated by SEM/EBSD. Acta Mater. 97, 338 (2015).

    Article  CAS  Google Scholar 

  27. F.X. Guo, W. Wang, W.H. Yu, Y. Zhang, S.P. Pan, Z.H. Zhou, D. Liu, J.Y. Qin, Y. Wang, and X.L. Tian: Enhanced nucleation and refinement of eutectic Si by high number-density nano-particles in Al–10Si–0.5Sb alloys. Mater. Des. 117, 382 (2017).

    Article  CAS  Google Scholar 

  28. S.X. Ji, W.C. Yang, F. Gao, D. Watson, and Z.Y. Fan: Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si die cast alloys. Mater. Sci. Eng., A 564, 130 (2013).

    Article  CAS  Google Scholar 

  29. Y.D. Jia, F.Y. Cao, P. Ma, S. Scudino, J. Eckert, J.F. Sun, and G. Wang: Microstructure and thermal conductivity of hypereutectic Al-high Si produced by casting and spray deposition. J. Mater. Res. 31, 2948 (2016).

    Article  CAS  Google Scholar 

  30. F. Bedir: Characteristic properties of Al–Cu–SiCp and Al–Cu–B4Cp composites produced by hot pressing method under nitrogen atmosphere. Mater. Des. 28, 1238 (2007).

    Article  CAS  Google Scholar 

  31. K.G. Prashanth, L. Löber, H-J. Klauss, U. Kühn, and J. Eckert: Characterization of 316L steel cellular dodecahedron structures produced by selective laser melting. Technologies 4, 34 (2016).

    Article  Google Scholar 

  32. B. Li, H.W. Wang, J.C. Jie, and Z.J. Wei: Effect of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5Si–0.5Mg alloy. Mater. Des. 32, 1617 (2011).

    Article  CAS  Google Scholar 

  33. Z.Y. Cai, C. Zhang, R.C. Wang, C.Q. Peng, K. Qiu, and Y. Feng: Preparation of Al–Si alloys by a rapid solidification and powder metallurgy route. Mater. Des. 87, 996 (2015).

    Article  CAS  Google Scholar 

  34. S. Elomari, M.D. Skibo, A. Sundarrajan, and H. Richards: Thermal expansion behaviour of particulate metal-matrix composites. Compos. Sci. Technol. 58, 369 (1998).

    Article  CAS  Google Scholar 

  35. W.A. Uju and I.N.A. Oguocha: A study of thermal expansion of Al–Mg alloy composites containing fly ash. Mater. Des. 33, 503 (2012).

    Article  CAS  Google Scholar 

  36. S. Nagarajan, B. Dutta, and M.K. Surappa: The effect of SiC particles on the size and morphology of eutectic silicon in cast A356/SiCp composites. Compos. Sci. Technol. 59, 897 (1999).

    Article  CAS  Google Scholar 

  37. N. Chawla, X. Deng, and D.R.M. Schnell: Thermal expansion anisotropy in extruded SiC particle reinforced 2080 aluminum alloy matrix composites. Mater. Sci. Eng., A 426, 314 (2006).

    Article  Google Scholar 

  38. Z. Hashin and S. Shtrikman: A variational approach to the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127 (1963).

    Article  Google Scholar 

  39. Z.J. Wei, P. Ma, H.W. Wang, C.M. Zou, S. Scudino, K.K. Song, K.G. Prashanth, W. Jiang, and J. Eckert: The thermal expansion behaviour of SiCp/Al–20Si composites solidified under high pressures. Mater. Des. 65, 387 (2015).

    Article  CAS  Google Scholar 

  40. T. Huber, H.P. Degischer, G. Lefran, and T. Schmitt: Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles. Compos. Sci. Technol. 66, 2206 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was supported by the National Key Research and Development Program of China (2016YFB0700203), the National Natural Science Foundation of China (Nos. 51601110, 51601109, 51375294, 51402189), the China Postdoctoral Science Foundation (No. 2016M601563), the Natural Science Foundation of Shanghai (No. 17ZR1440800, 14ZR1418300), the Youth Teacher Development Program of Shanghai Universities (Nos. ZZGCD15100, ZZGCD15036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan Ma or Konda Gokuidoss Prashanth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Jia, Y., Prashanth, K.G. et al. Effect of Si content on the microstructure and properties of Al–Si alloys fabricated using hot extrusion. Journal of Materials Research 32, 2210–2217 (2017). https://doi.org/10.1557/jmr.2017.97

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.97

Navigation