Skip to main content
Log in

Photodetectors based on sensitized two-dimensional transition metal dichalcogenides—A review

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Atomically thin transition metal dichalcogenides (TMDCs), such as WS2 and MoS2, have opened up new opportunities for the next generation of optoelectronics owing to their unique properties such as optical transparency, high carrier mobility, widely tunable band gap, and strong light–matter interaction. The photodetection performance relies primarily on the light absorption efficiency and separation efficiency of photoexcited electron–holes. The photodetectors with all broadband response, high photoconductive gain, high response speed, and high detectivity is arduous challenge to realize using one photo-active material. Building of photodetectors composed of two or more light absorber materials of different band gaps was an efficient route to realize high performance light detection. The application of a thin sensitizing layer atop the TMDCs has proven to be a viable route to improve the photodetection performance due to the efficient charge separation at the interface, and fast charge transfer process due to the high carrier mobility. In this article, we review the progress made toward hybrid photodetector based on TMDCs with various sensitizers from metal to large band-gap semiconductor in architectures from zero-dimensional quantum dot to two-dimensional crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao: Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 10, 573 (2016).

    Article  CAS  Google Scholar 

  2. L. Cheng, J.J. Liu, X. Gu, H. Gong, X. Shi, T. Liu, C. Wang, X.Y. Wang, G. Liu, H.Y. Xing, W.B. Bu, B.Q. Sun, and Z. Liu: PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 26, 1886 (2014).

    Article  CAS  Google Scholar 

  3. F.F. Yu, Q.W. Liu, X. Gan, M.X. Hu, T.Y. Zhang, C. Li, F.Y. Kang, M. Terrones, and R.T. Lv: Ultrasensitive pressure detection of few-layer MoS2. Adv. Mater. 29, 1603266 (2017).

    Article  CAS  Google Scholar 

  4. S. Butun, E. Palacios, J.D. Cain, Z.Z. Liu, V.P. Dravid, and K. Aydin: Quantifying plasmon-enhanced light absorption in monolayer WS2 films. ACS Appl. Mater. Interfaces 9, 15044 (2017).

    Article  CAS  Google Scholar 

  5. R. Saran and R.J. Curry: Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 10, 81 (2016).

    Article  CAS  Google Scholar 

  6. J.D. Mehew, S. Unal, E. Torres Alonso, G.F. Jones, S. Fadhil Ramadhan, M.F. Craciun, and S. Russo: Fast and highly sensitive ionic-polymer-gated WS2-graphene photodetectors. Adv. Mater. 29, 1700222 (2017).

    Article  CAS  Google Scholar 

  7. M. Buscema, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S. van der Zant, and A. Castellanos-Gomez: Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347 (2014).

    Article  CAS  Google Scholar 

  8. T. Mueller, F.N.A. Xia, and P. Avouris: Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297 (2010).

    Article  CAS  Google Scholar 

  9. F. Jabbarzadeh, M. Siahsar, M. Dolatyari, G. Rostami, and A. Rostami: Modification of graphene oxide for applying as mid-infrared photodetector. Appl. Phys. B: Lasers Opt. 120, 637 (2015).

    Article  CAS  Google Scholar 

  10. W. Knap, Y. Deng, S. Rumyantsev, and M.S. Shur: Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors. Appl. Phys. Lett. 81, 4637 (2002).

    Article  CAS  Google Scholar 

  11. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351 (2008).

    Article  CAS  Google Scholar 

  12. S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B.M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J.A. Garrido: High surface area graphene foams by chemical vapor deposition. 2D Mater. 3, 10 (2016).

    Article  CAS  Google Scholar 

  13. J.H. Li, L.Y. Niu, Z.J. Zheng, and F. Yan: Photosensitive graphene transistors. Adv. Mater. 26, 5239 (2014).

    Article  CAS  Google Scholar 

  14. B. Mortazavi: Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon 118, 25 (2017).

    Article  CAS  Google Scholar 

  15. L. Wang, C.M. Williams, M.S.H. Boutilier, P.R. Kidambi, and R. Karnik: Single-layer graphene membranes withstand ultrahigh applied pressure. Nano Lett. 17, 3081 (2017).

    Article  CAS  Google Scholar 

  16. F.H. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, and M. Polini: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780 (2014).

    Article  CAS  Google Scholar 

  17. W.Z. Yu, S.J. Li, Y.P. Zhang, W.L. Ma, T. Sun, J. Yuan, K. Fu, and Q.L. Bao: Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 13, 1700268 (2017).

    Article  CAS  Google Scholar 

  18. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497 (2013).

    Article  CAS  Google Scholar 

  19. Y. Cui, R. Xin, Z. Yu, Y. Pan, Z.Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y.W. Zhang, and X. Wang: High-performance monolayer WS2 field-effect transistors on high-kappa dielectrics. Adv. Mater. 27, 5230 (2015).

    Article  CAS  Google Scholar 

  20. J.H. Ahn, M.J. Lee, H. Heo, J.H. Sung, K. Kim, H. Hwang, and M.H. Jo: Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 15, 3703 (2015).

    Article  CAS  Google Scholar 

  21. Z. Yang, W. Jie, C.H. Mak, S. Lin, H. Lin, X. Yang, F. Yan, S.P. Lau, and J. Hao: Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse. ACS Nano 11, 4225 (2017).

    Article  CAS  Google Scholar 

  22. W. Cao, W. Liu, and K. Banerjee: Prospects of ultra-thin nanowire gated 2D-FETs for next-generation CMOS technology. In Electron Devices Meeting (IEDM), 2016 IEEE International, (IEEE, 2016); p. 14.7.1. DOI: https://doi.org/10.1109/IEDM.2016.7838419.

  23. H.S. Lee, J.M. Shin, P.J. Jeon, J. Lee, J.S. Kim, H.C. Hwang, E. Park, W. Yoon, S.Y. Ju, and S. Im: Few-layer MoS2-organic thin-film hybrid complementary inverter pixel fabricated on a glass substrate. Small 11, 2132 (2015).

    Article  CAS  Google Scholar 

  24. J.O. Island, A. Kuc, E.H. Diependaal, R. Bratschitsch, H.S.J. van der Zant, T. Heine, and A. Castellanos-Gomez: Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. Nanoscale 8, 2589 (2016).

    Article  CAS  Google Scholar 

  25. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  26. C.R. Kagan, E. Lifshitz, E.H. Sargent, and D.V. Talapin: Building devices from colloidal quantum dots. Science 353, 885 (2016).

    Article  CAS  Google Scholar 

  27. C.Y. Lan, C. Li, S. Wang, Y. Yin, H.Y. Guo, N.H. Liu, and Y. Liu: ZnO–WS2 heterostructures for enhanced ultra-violet photodetectors. RSC Adv. 6, 67520 (2016).

    Article  CAS  Google Scholar 

  28. T. Rauch, M. Böberl, S.F. Tedde, J. Fürst, M.V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden: Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics 3, 332 (2009).

    Article  CAS  Google Scholar 

  29. Y. Yu, Y.T. Zhang, X.X. Song, H.T. Zhang, M.X. Cao, Y.L. Che, H.T. Dai, J.B. Yang, H. Zhang, and J.Q. Yao: PbS-decorated WS2 phototransistors with fast response. ACS Photonics 4, 950 (2017).

    Article  CAS  Google Scholar 

  30. D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F.H. Koppens, and G. Konstantatos: Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 27, 176 (2015).

    Article  CAS  Google Scholar 

  31. Z.Y. Jia, J.Y. Xiang, F.S. Wen, R.L. Yang, C.X. Hao, and Z.Y. Liu: Enhanced photoresponse of SnSe-nanocrystals-decorated WS2 monolayer phototransistor. ACS Appl. Mater. Interfaces 8, 4781 (2016).

    Article  CAS  Google Scholar 

  32. Z.J. Xu, S.S. Lin, X.Q. Li, S.J. Zhang, Z.Q. Wu, W.L. Xu, Y.H. Lu, and S. Xu: Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity. Nano Energy 23, 89 (2016).

    Article  CAS  Google Scholar 

  33. Z. Jia, S. Li, J. Xiang, F. Wen, X. Bao, S. Feng, R. Yang, and Z. Liu: Highly sensitive and fast monolayer WS2 phototransistors realized by SnS nanosheet decoration. Nanoscale 9, 1916 (2017).

    Article  CAS  Google Scholar 

  34. H.R. Gutiérrez, N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, and M. Terrones: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447 (2013).

    Article  CAS  Google Scholar 

  35. G.L. Frey, R. Tenne, M.J. Matthews, M.S. Dresselhaus, and G. Dresselhaus: Optical properties of MS2 (M = Mo, W) inorganic fullerenelike and nanotube material optical absorption and resonance Raman measurements. J. Mater. Res. 13, 2412 (2011).

    Article  Google Scholar 

  36. X.D. Xu, W. Yao, D. Xiao, and T.F. Heinz: Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343 (2014).

    Article  CAS  Google Scholar 

  37. X. Wang, Y. Gong, G. Shi, W.L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, and E. Ringe: Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 8, 5125 (2014).

    Article  CAS  Google Scholar 

  38. C. Hu, D.D. Dong, X.K. Yang, K.K. Qiao, D. Yang, H. Deng, S.J. Yuan, J. Khan, Y. Lan, H.S. Song, and J. Tang: Synergistic effect of hybrid PbS quantum dots/2d-WSe2 toward high performance and broadband phototransistors. Adv. Funct. Mater. 27, 1603605 (2017).

    Article  CAS  Google Scholar 

  39. W.J. Zhao, Z. Ghorannevis, L.Q. Chu, M.L. Toh, C. Kloc, P-H. Tan, and G. Eda: Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791 (2013).

    Article  CAS  Google Scholar 

  40. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H.M. Hill, A.M. van der Zande, D.A. Chenet, E-M. Shih, J. Hone, and T.F. Heinz: Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    Article  CAS  Google Scholar 

  41. M. Bernardi, M. Palummo, and J.C. Grossman: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664 (2013).

    Article  CAS  Google Scholar 

  42. A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, and T.F. Heinz: Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  CAS  Google Scholar 

  43. A.R. Bromley, J.C. Knights, and W.Y. Liang: Transmission spectra of some transition metal dichalcogenides. II. Group VIA: Trigonal prismatic coordination. J. Phys. C: Solid State Phys. 5, 3540 (1972).

    Article  Google Scholar 

  44. F. Yang, M. Wilkinson, E.J. Austin, and K.P. O’Donnell: Origin of the stokes shift: A geometrical model of exciton spectra in 2D semiconductors. Phys. Rev. Lett. 70, 323 (1993).

    Article  CAS  Google Scholar 

  45. A. Ramasubramaniam: Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

    Article  CAS  Google Scholar 

  46. R.A. Bromley, R.B. Murray, and A.D. Yoffe: The band structures of some transition metal dichalcogenides. III. Group VIA: Trigonal prism materials. J. Phys. C: Solid State Phys. 5, 759 (1972).

    Article  CAS  Google Scholar 

  47. Z.Y. He, Y.W. Sheng, Y.M. Rong, G-D. Lee, J. Li, and J.H. Warner: Layer-dependent modulation of tungsten disulfide photoluminescence by lateral electric fields. ACS Nano 9, 2740 (2015).

    Article  CAS  Google Scholar 

  48. H-C. Kim, H. Kim, J-U. Lee, H-B. Lee, D-H. Choi, J-H. Lee, W.H. Lee, S.H. Jhang, B.H. Park, H. Cheong, S-W. Lee, and H-J. Chung: Engineering optical and electronic properties of WS2 by varying the number of layers. ACS Nano 9, 6854 (2015).

    Article  CAS  Google Scholar 

  49. Y.L. Wang, C.X. Cong, W.H. Yang, J.Z. Shang, N.H. Peimyoo, Y. Chen, J.Y. Kang, J.P. Wang, W. Huang, and T. Yu: Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 8, 2562 (2015).

    Article  CAS  Google Scholar 

  50. R. Rafael, C-G. Andrés, C. Emmanuele, and G. Francisco: Strain engineering in semiconducting two-dimensional crystals. J. Phys.: Condens. Matter 27, 313201 (2015).

    Google Scholar 

  51. K.P. Dhakal, S. Roy, H. Jang, X. Chen, W.S. Yun, H. Kim, J. Lee, J. Kim, and J-H. Ahn: Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater. 29, 5124 (2017).

    Article  CAS  Google Scholar 

  52. K. He, C. Poole, K.F. Mak, and J. Shan: Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931 (2013).

    Article  CAS  Google Scholar 

  53. S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia, R. Kapadia, J.W. Ager, J. Guo, and A. Javey: Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592 (2014).

    Article  CAS  Google Scholar 

  54. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, and K.I. Bolotin: Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626 (2013).

    Article  CAS  Google Scholar 

  55. X. Wei, F.G. Yan, C. Shen, Q.S. Lv, and K.Y. Wang: Photodetectors based on junctions of two-dimensional transition metal dichalcogenides. Chin. Phys. B 26, 038504 (2017).

    Article  CAS  Google Scholar 

  56. A. Molina-Sánchez and L. Wirtz: Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011).

    Article  CAS  Google Scholar 

  57. K-T. Chen and S-T. Chang: How high can the mobility of monolayer tungsten disulfide be? Vacuum 140, 172 (2017).

    Article  CAS  Google Scholar 

  58. N.J. Huo, J. Kang, Z.M. Wei, S-S. Li, J.B. Li, and S-H. Wei: Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv. Funct. Mater. 24, 7025 (2014).

    Article  CAS  Google Scholar 

  59. D. Ovchinnikov, A. Allain, Y-S. Huang, D. Dumcenco, and A. Kis: Electrical transport properties of single-layer WS2. ACS Nano 8, 8174 (2014).

    Article  CAS  Google Scholar 

  60. F. Wang, Z. Wang, K. Xu, F. Wang, Q. Wang, Y. Huang, L. Yin, and J. He: Tunable GaTe–MoS2 van der Waals p–n junctions with novel optoelectronic performance. Nano Lett. 15, 7558 (2015).

    Article  CAS  Google Scholar 

  61. M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo, J.H. Park, C. Hwang, and J. Eom: High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015).

    Article  CAS  Google Scholar 

  62. C. Kim, I. Moon, D. Lee, M.S. Choi, F. Ahmed, S. Nam, Y. Cho, H-J. Shin, S. Park, and W.J. Yoo: Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588 (2017).

    Article  CAS  Google Scholar 

  63. Y. Xu, C. Cheng, S.C. Du, J.Y. Yang, B. Yu, J. Luo, W.Y. Yin, E.P. Li, S.R. Dong, P.D. Ye, and X.F. Duan: Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p–n heterojunctions. ACS Nano 10, 4895 (2016).

    Article  CAS  Google Scholar 

  64. M.S. Choi, D. Qu, D. Lee, X. Liu, K. Watanabe, T. Taniguchi, and W.J. Yoo: Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 8, 9332 (2014).

    Article  CAS  Google Scholar 

  65. W.G. Luo, Y.F. Cao, P.G. Cai, Q. Feng, F.G. Yan, T.F. Yan, X.H. Zhang, and K.Y. Wang: Gate tuning of high-performance InSe-based photodetectors using graphene electrodes. Adv. Opt. Mater. 3, 1418 (2015).

    Article  CAS  Google Scholar 

  66. X. Wei, F.G. Yan, Q.S. Lv, C. Shen, and K.Y. Wang: Fast gate-tunable photodetection in the graphene sandwiched WSe2/GaSe heterojunctions. Nanoscale 9, 8388 (2017).

    Article  CAS  Google Scholar 

  67. M. Buscema, J.O. Island, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S.J. van der Zant, and A. Castenllanos-Gomez: Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691 (2015).

    Article  CAS  Google Scholar 

  68. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, and Y. Zhang: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014).

    Article  CAS  Google Scholar 

  69. S. Yang, S. Tongay, Y. Li, Q. Yue, J.B. Xia, S.S. Li, J. Li, and S.H. Wei: Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 6, 7226 (2014).

    Article  CAS  Google Scholar 

  70. S. Zhao, H. Wang, Y. Zhou, L. Liao, Y. Jiang, X. Yang, G. Chen, M. Lin, Y. Wang, H. Peng, and Z. Liu: Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 8, 288 (2015).

    Article  CAS  Google Scholar 

  71. W. Feng, J-B. Wu, X. Li, W. Zheng, X. Zhou, K. Xiao, W. Cao, B. Yang, J-C. Idrobo, L. Basile, W. Tian, P. Tan, and P. Hu: Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 3, 7022 (2015).

    Article  CAS  Google Scholar 

  72. D. Zhitomirsky, M. Furukawa, J. Tang, P. Stadler, S. Hoogland, O. Voznyy, H. Liu, and E.H. Sargent: N-type colloidal-quantum-dot solids for photovoltaics. Adv. Mater. 24, 6181 (2012).

    Article  CAS  Google Scholar 

  73. N.R. Pradhan, D. Rhodes, S. Feng, Y. Xin, S. Memaran, B-H. Moon, H. Terrones, M. Terrones, and L. Balicas: Field-effect transistors based on few-layered α-MoTe2. ACS Nano 8, 5911 (2014).

    Article  CAS  Google Scholar 

  74. T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, and Y. Miyamoto: Few-layer HfS2 transistors. Sci. Rep. 6, 22277 (2016).

    Article  CAS  Google Scholar 

  75. L. Yin, K. Xu, Y. Wen, Z. Wang, Y. Huang, F. Wang, T.A. Shifa, R. Cheng, H. Ma, and J. He: Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett. 109, 213105 (2016).

    Article  CAS  Google Scholar 

  76. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    Article  CAS  Google Scholar 

  77. J. Luther, Q. Song, B.K. Hughes, C.L. Perkins, and A.J. Nozik: Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc. 130, 5974 (2008).

    Article  CAS  Google Scholar 

  78. Y. Su, M.A. Ebrish, E.J. Olson, and S.J. Koester: SnSe2 field-effect transistors with high drive current. Appl. Phys. Lett. 103, 263104 (2013).

    Article  CAS  Google Scholar 

  79. J. Huang, J. Pu, C. Hsu, M. Chiu, Z. Juang, Y. Chang, W. Chang, Y. Iwasa, T. Takenobu, and L.J. Li: Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8, 923 (2014).

    Article  CAS  Google Scholar 

  80. J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu, M. Cheng, G. Xie, W. Yang, R. Yang, and X.D. Bai: Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 8, 6024 (2014).

    Article  CAS  Google Scholar 

  81. D. Ovchinnikov, A. Allain, Y. Huang, D. Dumcenco, and A. Kis: Electrical transport properties of single-layer WS2. ACS Nano 8, 140728153134003 (2014).

    Article  CAS  Google Scholar 

  82. M. Zhang, Y. Zhu, X. Wang, Q. Feng, S. Qiao, W. Wen, Y. Chen, M. Cui, J. Zhang, C. Cai, and L. Xie: Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride. J. Am. Chem. Soc. 137, 7051 (2015).

    Article  CAS  Google Scholar 

  83. H. Wei, D. DeSantis, W. Wei, Y. Deng, D. Guo, T.J. Savenije, L. Cao, and J. Huang: Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826 (2017).

    Article  CAS  Google Scholar 

  84. S. Balendhran, J. Deng, J.Z. Ou, S. Walia, J. Scott, J. Tang, K.L. Wang, M.R. Field, S. Russo, S. Zhuiykov, M.S. Strano, N. Medhekar, S. Sriram, M. Bhaskaran, and K. Kalantar-zadeh: Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater. 25, 109 (2013).

    Article  CAS  Google Scholar 

  85. J. Zhou, Q. Zeng, D. Lv, L. Sun, L. Niu, W. Fu, F. Liu, Z. Shen, C. Jin, and Z. Liu: Controlled synthesis of high-quality monolayered alpha-In2Se3 via physical vapor deposition. Nano Lett. 15, 6400 (2015).

    Article  CAS  Google Scholar 

  86. K. Xu, Z. Wang, F. Wang, Y. Huang, F. Wang, L. Yin, C. Jiang, and J. He: Ultrasensitive phototransistors based on few-layered HfS2. Adv. Mater. 27, 7881 (2015).

    Article  CAS  Google Scholar 

  87. D. Li, X. Wang, Q. Zhang, L. Zou, X. Xu, and Z. Zhang: Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures. Adv. Funct. Mater. 25, 7360 (2015).

    Article  CAS  Google Scholar 

  88. C. Wang, S. Yang, W. Xiong, C. Xia, H. Cai, B. Chen, X. Wang, X. Zhang, Z. Wei, and S. Tongay: Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p–n heterojunctions. Phys. Chem. Chem. Phys. 18, 27750 (2016).

    Article  CAS  Google Scholar 

  89. A.K. Deb and V. Kumar: Bandgap engineering in semiconducting one to few layers of SnS and SnSe. Phys. Status Solidi B 254, 1600379 (2017).

    Article  CAS  Google Scholar 

  90. Y. Guo and J. Robertson: Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures. Appl. Phys. Lett. 108, 233104 (2016).

    Article  CAS  Google Scholar 

  91. O. Lang, A. Klein, C. Pettenkofer, W. Jaegermann, and A. Chevy: Band lineup of lattice mismatched InSe/GaSe quantum well structures prepared by van der Waals epitaxy: Absence of interfacial dipoles. J. Appl. Phys. 80, 3817 (1996).

    Article  CAS  Google Scholar 

  92. J. Lin, Y. Dong, Q. Zhang, D. Hu, N. Li, L. Wang, Y. Liu, and T. Wu: Interrupted chalcogenide-based zeolite-analogue semiconductor: Atomically precise doping for tunable electro-/photoelectrochemical properties. Angew. Chem. 54, 5103 (2015).

    Article  CAS  Google Scholar 

  93. C.H. Chuang, P.R. Brown, V. Bulovic, and M.G. Bawendi: Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13, 796 (2014).

    Article  CAS  Google Scholar 

  94. H.S. Jung and N.G. Park: Perovskite solar cells: From materials to devices. Small 11, 10 (2015).

    Article  CAS  Google Scholar 

  95. R.K. Kokal, P.N. Kumar, M. Deepa, and A.K. Srivastava: Lead selenide quantum dots and carbon dots amplify solar conversion capability of a TiO2/CdS photoanode. J. Mater. Chem. 3, 20715 (2015).

    Article  CAS  Google Scholar 

  96. H. Liu, B. Xu, J.M. Liu, J. Yin, F. Miao, C.G. Duan, and X.G. Wan: Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS2. Phys. Chem. Chem. Phys. 18, 14222 (2016).

    Article  CAS  Google Scholar 

  97. K.T. Butler, R. Crespo-Otero, J. Buckeridge, D.O. Scanlon, E. Bovill, D. Lidzey, and A. Walsh: Band energy control of molybdenum oxide by surface hydration. Appl. Phys. Lett. 107, 231605 (2015).

    Article  CAS  Google Scholar 

  98. D. Kufer, T. Lasanta, M. Bernechea, F.H.L. Koppens, and G. Konstantatos: Interface engineering in hybrid quantum dot-2D phototransistors. ACS Photonics 3, 1324 (2016).

    Article  CAS  Google Scholar 

  99. D. Macdonald and A. Cuevas: Trapping of minority carriers in multicrystalline silicon. Appl. Phys. Lett. 74, 1710 (1999).

    Article  CAS  Google Scholar 

  100. M.M. Furchi, D.K. Polyushkin, A. Pospischil, and T. Mueller: Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 14, 6165 (2014).

    Article  CAS  Google Scholar 

  101. A.J. Molina-Mendoza, L. Vaquero-Garzon, S. Leret, L. de Juan-Fernandez, E.M. Perez, and A. Castellanos-Gomez: Engineering the optoelectronic properties of MoS2 photodetectors through reversible noncovalent functionalization. Chem. Commun. 52, 14365 (2016).

    Article  CAS  Google Scholar 

  102. H. Hai, W. Jianlu, H. Weida, L. Lei, W. Peng, W. Xudong, G. Fan, C. Yan, W. Guangjian, L. Wenjin, S. Hong, L. Tie, S. Jinglan, M. Xiangjian, C. Xiaoshuang, and C. Junhao: Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 27, 445201 (2016).

    Article  CAS  Google Scholar 

  103. J. Miao, B. Song, Q. Li, L. Cai, S. Zhang, W. Hu, L. Dong, and C. Wang: Photothermal effect induced negative photoconductivity and high responsivity in flexible black phosphorus transistors. ACS Nano 11, 6048 (2017).

    Article  CAS  Google Scholar 

  104. W. Choi, M.Y. Cho, A. Konar, J.H. Lee, G-B. Cha, S.C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, and S. Kim: High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24, 5832 (2012).

    Article  CAS  Google Scholar 

  105. N. Perea-López, Z. Lin, N.R. Pradhan, A. Iñiguez-Rábago, A. Laura Elías, A. McCreary, J. Lou, P.M. Ajayan, H. Terrones, L. Balicas, and M. Terrones: CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1, 011004 (2014).

    Article  CAS  Google Scholar 

  106. Y-H. Chang, W.J. Zhang, Y.H. Zhu, Y. Han, J. Pu, J-K. Chang, W-T. Hsu, J-K. Huang, C-L. Hsu, and M-H. Chiu: Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582 (2014).

    Article  CAS  Google Scholar 

  107. F.N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam: Two-dimensional material nanophotonics. Nat. Photonics 8, 899 (2014).

    Article  CAS  Google Scholar 

  108. Y. Wen, L. Yin, P. He, Z. Wang, X. Zhang, Q. Wang, T.A. Shifa, K. Xu, F. Wang, X. Zhan, F. Wang, C. Jiang, and J. He: Integrated high-performance infrared phototransistor arrays composed of nonlayered PbS–MoS2 heterostructures with edge contacts. Nano Lett. 16, 6437 (2016).

    Article  CAS  Google Scholar 

  109. Z.Y. Yin, H. Li, H. Li, L. Jiang, Y.M. Shi, Y.H. Sun, G. Lu, Q. Zhang, X.D. Chen, and H. Zhang: Single-layer MoS2 phototransistors. ACS Nano 6, 74 (2012).

    Article  CAS  Google Scholar 

  110. C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao: Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 5, 11830 (2015).

    Article  Google Scholar 

  111. N. Huo, S. Yang, Z. Wei, S.S. Li, J.B. Xia, and J. Li: Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 4, 5209 (2014).

    Article  CAS  Google Scholar 

  112. C.Y. Zhang, S. Wang, L.J. Yang, Y. Liu, T.T. Xu, Z.Y. Ning, A. Zak, Z.Y. Zhang, R. Tenne, and Q. Chen: High-performance photodetectors for visible and near-infrared lights based on individual WS2 nanotubes. Appl. Phys. Lett. 100, 243101 (2012).

    Article  CAS  Google Scholar 

  113. J. Yao, Z. Zheng, J. Shao, and G. Yang: Promoting photosensitivity and detectivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer. ACS Appl. Mater. Interfaces 7, 26701 (2015).

    Article  CAS  Google Scholar 

  114. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E.H. Sargent: Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180 (2006).

    Article  CAS  Google Scholar 

  115. A. Boulesbaa, K. Wang, M. Mahjouri-Samani, M. Tian, A.A. Puretzky, I. Ivanov, C.M. Rouleau, K. Xiao, B.G. Sumpter, and D.B. Geohegan: Ultrafast charge transfer and hybrid exciton formation in 2D/0D heterostructures. J. Am. Chem. Soc. 138, 14713 (2016).

    Article  CAS  Google Scholar 

  116. J. Schornbaum, B. Winter, S.P. Schießl, F. Gannott, G. Katsukis, D.M. Guldi, E. Spiecker, and J. Zaumseil: Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 24, 5798 (2014).

    Article  CAS  Google Scholar 

  117. Z.Y. Jia, J.Y. Xiang, C.P. Mu, F.S. Wen, R.L. Yang, C.X. Hao, and Z.Y. Liu: Improved photoresponse and stable photoswitching of tungsten disulfide single-layer phototransistor decorated with black phosphorus nanosheets. J. Mater. Sci. 52, 11506 (2017).

    Article  CAS  Google Scholar 

  118. W. Zheng, W. Feng, X. Zhang, X.S. Chen, G.B. Liu, Y.F. Qiu, T. Hasan, P.H. Tan, and P.A. Hu: Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 26, 2648 (2016).

    Article  CAS  Google Scholar 

  119. W. Zheng, W. Feng, X. Zhang, X. Chen, G. Liu, Y. Qiu, T. Hasan, P. Tan, and P.A. Hu: Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 26, 2648 (2016).

    Article  CAS  Google Scholar 

  120. M. Nasilowski, B. Mahler, E. Lhuillier, S. Ithurria, and B. Dubertret: Two-dimensional colloidal nanocrystals. Chem. Rev. 116, 10934 (2016).

    Article  CAS  Google Scholar 

  121. Z. Xing, Z. Nan, L. Chao, S. Hongyue, Z. Qi, H. Xiaozong, G. Lin, L. Huiqiao, L. Jingtao, L. Jun, X. Jie, and Z. Tianyou: Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors. 2D Mater. 4, 025048 (2017).

    Article  CAS  Google Scholar 

  122. Y.X. Deng, Z. Luo, N.J. Conrad, H. Liu, Y.J. Gong, S. Najmaei, P.M. Ajayan, J. Lou, X.F. Xu, and P.D. Ye: Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292 (2014).

    Article  CAS  Google Scholar 

  123. R. Ai, X. Guan, J. Li, K.K. Yao, P. Chen, Z.W. Zhang, X.D. Duan, and X.F. Duan: Growth of single-crystalline cadmium iodide nanoplates, CdI2/MoS2 (WS2, WSe2) van der Waals heterostructures, and patterned arrays. ACS Nano 11, 3413 (2017).

    Article  CAS  Google Scholar 

  124. S. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J.C. Grossman, C. Jiang, Q. Liu, and S. Tongay: Self-driven photodetector and ambipolar transistor in atomically thin GaTe–MoS2 p–n vdW heterostructure. ACS Appl. Mater. Interfaces 8, 2533 (2016).

    Article  CAS  Google Scholar 

  125. C-H. Lee, G-H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, and P. Kim: Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676 (2014).

    Article  CAS  Google Scholar 

  126. J. Zhang, J.H. Wang, P. Chen, Y. Sun, S. Wu, Z.J. Jia, X.B. Lu, H. Yu, W. Chen, J.Q. Zhu, G.B. Xie, R. Yang, D.X. Shi, X.L. Xu, J.Y. Xiang, K.H. Liu, and G.Y. Zhang: Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 28, 1950 (2016).

    Article  CAS  Google Scholar 

  127. X.P. Hong, J. Kim, S-F. Shi, Y. Zhang, C.H. Jin, Y.H. Sun, S. Tongay, J.Q. Wu, Y.F. Zhang, and F. Wang: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682 (2014).

    Article  CAS  Google Scholar 

  128. H-P. Komsa and A.V. Krasheninnikov: Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 88, 085318 (2013).

    Article  CAS  Google Scholar 

  129. R. Cheng, D.H. Li, H.L. Zhou, C. Wang, A.X. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X.F. Duan: Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590 (2014).

    Article  CAS  Google Scholar 

  130. L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, and S.V. Morozov: Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311 (2013).

    Article  CAS  Google Scholar 

  131. S. Ratha, A.J. Simbeck, D.J. Late, S.K. Nayak, and C.S. Rout: Negative infrared photocurrent response in layered WS2/reduced graphene oxide hybrids. Appl. Phys. Lett. 105, 243502 (2014).

    Article  CAS  Google Scholar 

  132. Z. Jin, D. He, Q. Zhou, P. Mao, L. Ding, and J. Wang: Bilayer heterostructured PThTPTI/WS2 photodetectors with high thermal stability in ambient environment. ACS Appl. Mater. Interfaces 8, 33043 (2016).

    Article  CAS  Google Scholar 

  133. C. Lan, C. Li, S. Wang, T. He, T. Jiao, D. Wei, W. Jing, L. Li, and Y. Liu: Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction. ACS Appl. Mater. Interfaces 8, 18375 (2016).

    Article  CAS  Google Scholar 

  134. X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan: Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024 (2014).

    Article  CAS  Google Scholar 

  135. W. Zhang, C.P. Chuu, J.K. Huang, C.H. Chen, M.L. Tsai, Y.H. Chang, C.T. Liang, Y.Z. Chen, Y.L. Chueh, J.H. He, M.Y. Chou, and L.J. Li: Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 4, 3826 (2014).

    Article  CAS  Google Scholar 

  136. H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang: High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 10, 2300 (2014).

    Article  CAS  Google Scholar 

  137. H. Qiao, J. Yuan, Z.Q. Xu, C.Y. Chen, S.H. Lin, Y.S. Wang, J.C. Song, Y. Liu, Q. Khan, H.Y. Hoh, C-X. Pan, S.J. Li, and Q.L. Bao: Broadband photodetectors based on graphene–Bi2Te3 heterostructure. ACS Nano 9, 1886 (2015).

    Article  CAS  Google Scholar 

  138. L. Ye, H. Li, Z.F. Chen, and J.B. Xu: Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 3, 692 (2016).

    Article  CAS  Google Scholar 

  139. C. Ma, Y. Shi, W. Hu, M.H. Chiu, Z. Liu, A. Bera, F. Li, H. Wang, L.J. Li, and T. Wu: Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 28, 3683 (2016).

    Article  CAS  Google Scholar 

  140. K. Zhang, X. Fang, Y. Wang, Y. Wan, Q. Song, W. Zhai, Y. Li, G. Ran, Y. Ye, and L. Dai: Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces 9, 5392 (2017).

    Article  CAS  Google Scholar 

  141. W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan: Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952 (2013).

    Article  CAS  Google Scholar 

  142. C.H. Lee, G.H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, and P. Kim: Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676 (2014).

    Article  CAS  Google Scholar 

  143. D. De Fazio, I. Goykhman, D. Yoon, M. Bruna, A. Eiden, S. Milana, U. Sassi, M. Barbone, D. Dumcenco, K. Marinov, A. Kis, and A.C. Ferrari: High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 10, 8252 (2016).

    Article  CAS  Google Scholar 

  144. J.D. Yao, Z.Q. Zheng, and G.W. Yang: Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J. Mater. Chem. C 4, 7831 (2016).

    Article  CAS  Google Scholar 

  145. H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J.H. Warner: Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano 10, 7866 (2016).

    Article  CAS  Google Scholar 

  146. M. Kyung-Ah, C. Janghwan, C. Kyeongjae, and H. Suklyun: Ferromagnetic contact between Ni and MoX2 (X = S, Se, or Te) with fermi-level pinning. 2D Mater. 4, 024006 (2017).

    Article  CAS  Google Scholar 

  147. H.M. Khalil, M.F. Khan, J. Eom, and H. Noh: Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl. Mater. Interfaces 7, 23589 (2015).

    Article  CAS  Google Scholar 

  148. M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Kamran, A. Majid, T. Alharbi, and J. Eom: Tailoring the electrical and photo-electrical properties of a WS2 field effect transistor by selective n-type chemical doping. RSC Adv. 6, 24675 (2016).

    Article  CAS  Google Scholar 

  149. H. Fang, M. Tosun, G. Seol, T.C. Chang, K. Takei, J. Guo, and A. Javey: Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991 (2013).

    Article  CAS  Google Scholar 

  150. N. Kaushik, D. Karmakar, A. Nipane, S. Karande, and S. Lodha: Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS Appl. Mater. Interfaces 8, 256 (2016).

    Article  CAS  Google Scholar 

  151. L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P.Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P.D. Ye: Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275 (2014).

    Article  CAS  Google Scholar 

  152. M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo, and J. Eom: Deep-ultraviolet-light-driven reversible doping of WS2 field-effect transistors. Nanoscale 7, 747 (2015).

    Article  CAS  Google Scholar 

  153. C-J. Shih, Q.H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M.S. Strano: Tuning on–off current ratio and field-effect mobility in a MoS2–graphene heterostructure via Schottky barrier modulation. ACS Nano 8, 5790 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (51571172, 11404280, 51672240, and 51571171), Natural Science Foundation for Distinguished Young Scholars of Hebei Province (E2017203095), Natural Science Foundation of Hebei Province (E2016203484 and A2015203337), and Research Program of the College Science & Technology of Hebei Province (ZD2017083 and QN2014047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyong Xiang or Zhongyuan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, C., Xiang, J. & Liu, Z. Photodetectors based on sensitized two-dimensional transition metal dichalcogenides—A review. Journal of Materials Research 32, 4115–4131 (2017). https://doi.org/10.1557/jmr.2017.402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.402

Navigation