Skip to main content
Log in

Nucleation and growth of metamorphic epitaxial aluminum on silicon (111) 7 × 7 and \(\sqrt 3 \times \sqrt 3\) surfaces

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The nucleation and growth of Al on 7 × 7 and \(\sqrt 3 \times \sqrt 3\) R30 Al reconstructed Si(111) that result in strain-free Al overgrown films grown with an atomically abrupt metamorphic interface are compared. The reconstructed surfaces and abrupt strain relaxations are verified using reflection high-energy electron diffraction. The topography of evolution is examined with atomic force microscopy. The growth of Al on both the surfaces exhibits 3D island growth, but the island evolution of growth is dramatically different. On the 7 × 7 surface, mounds formed are uniformly distributed across the substrate, and growth appears to proceed uniformly. Alternatively, on the \(\sqrt 3 \times \sqrt 3\) R30 surface, Al atoms exhibit a clear preference to form mounds near the step edges. During Al growth, mounds increase in size and number, expanding out from step edges until they cover the whole substrate. Consistent expression of a mounded nucleation and growth mode imparts a physical limitation to the achievable surface roughness that may impact the ultimate performance of layered devices such as Josephson junctions that are critical components of superconducting quantum circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. C.J.K. Richardson and M.L. Lee: Metamorphic epitaxial materials. MRS Bull. 41, 193 (2016).

    Article  CAS  Google Scholar 

  2. F.C. Frank and J.H. van der Merwe: One-dimensional dislocations. I. Static theory. Proc. R. Soc. London, Ser. A 198, 205 (1949).

    Article  CAS  Google Scholar 

  3. F.C. Frank and J.H. van der Merwe: One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth. Proc. R. Soc. London, Ser. A 198, 216 (1949).

    Article  CAS  Google Scholar 

  4. J. Woltersdorf: Misfit accommodation at interfaces by dislocations. Appl. Surf. Sci. 11/12, 495 (1982).

    Article  Google Scholar 

  5. G.R. Johnson, B.C. Cavenett, T.M. Kerr, P.B. Kirby, and C.E.C. Wood: Optical, Hall and cyclotron resonance measurements of GaSb grown by molecular beam epitaxy. Semicond. Sci. Technol. 3, 1157 (1988).

    Article  CAS  Google Scholar 

  6. S.V. Ivanov, P.D. Altukhov, T.S. Argunova, A.A. Bakun, A.A. Budza, V.V. Chaldyshev, Y.A. Kovalenko, P.S. Kop’ev, R.N. Kutt, B.Y. Meltser, S.S. Ruvimov, S.V. Shaposhnikov, L.M. Sorokin, and V.M. Ustinov: Molecular beam epitaxy growth and characterization of thin (<2 µm) GaSb 1 layers on GaAs(100) substrates. Semicond. Sci. Technol. 8, 347 (1993).

    Article  CAS  Google Scholar 

  7. A. Trampert, E. Tounrié, and K.H. Ploog: Novel plastic strain-relaxation mode in highly mismatched III–V layers induced by two-dimensional epitaxial growth. Appl. Phys. Lett. 66 (17), 2265 (1995).

    Article  CAS  Google Scholar 

  8. C.J.K. Richardson, L. He, and S. Kanakraju: Metamorphic growth of III–V semiconductor bicrystals. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 29 (3), 03C126 (2011).

    Google Scholar 

  9. M. Mehta, G. Balakrishnan, S. Huang, A. Khoshakhlagh, A. Jallipalli, P. Patel, M.N. Kutty, L.R. Dawson, and D.L. Huffaker: GaSb quantum-well-based “buffer-free” vertical light emitting diode monolithically embedded within a GaAs cavity incorporating interfacial misfit arrays. Appl. Phys. Lett. 89, 211110 (2006).

    Article  CAS  Google Scholar 

  10. C.J.K. Richardson, L. He, P. Apiratikul, N.P. Siwak, and R.P. Leavitt: Improved GaSb-based quantum well laser performance through metamorphic growth on GaAs substrates. Appl. Phys. Lett. 106, 101108 (2015).

    Article  CAS  Google Scholar 

  11. M. Edirisooriya, T.D. Mishima, C.K. Gaspe, K. Bottoms, R.J. Hauenstein, and M.B. Santos: InSb quantum-well structures for electronic device applications. J. Cryst. Growth 311, 1972 (2009).

    Article  CAS  Google Scholar 

  12. J.H. van der Merwe: Crystal interfaces. Part I. Semi-infinite crystals. J. Appl. Phys. 34 (1), 117 (1963).

    Article  Google Scholar 

  13. J.H. van der Merwe: Crystal interfaces. Part II. Finite overgrowths. J. Appl. Phys. 34 (1), 123 (1963).

    Article  Google Scholar 

  14. W.A. Jesser and J.H. van der Merwe: The size dependence of equilibrium elastic strain in finite epitaxial islands. Surf. Sci. 31, 229 (1972).

    Article  CAS  Google Scholar 

  15. J.A. Snyman and H.C. Snyman: Computed epitaxial monolayer structures III. Two-dimensional model: Zero average strain monolayer structures in the case of hexagonal interfacial symmetry. Surf. Sci. 105, 357 (1981).

    Article  CAS  Google Scholar 

  16. J.H. van der Merwe: Theoretical considerations in growing uniform epilayers. Interface Sci. 1, 77 (1993).

    Article  Google Scholar 

  17. A. Danescu, B. Gobaut, J. Penuelas, G. Grenet, V. Favre-Nicolin, N. Blanc, T. Zhou, G. Renaud, and G. Saint-Girons: Interface accommodation mechanism for weakly interacting epitaxial systems. Appl. Phys. Lett. 103, 021602 (2013).

    Article  CAS  Google Scholar 

  18. G. Pilania, B.J. Thijsse, R.G. Hoagland, I. Lazic, S. Valone, and X-Y. Liu: Revisiting the Al/Al2O3 Interface: Coherent interfaces and misfit accommodation. Sci. Rep. 4, 4485 (2014).

    Article  CAS  Google Scholar 

  19. J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, and R.J. Schoelkopf: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  CAS  Google Scholar 

  20. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T.C. White, J. Mutus, A.G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A.N. Korotkov, A.N. Cleland, and J.M. Martinis: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014).

    Article  CAS  Google Scholar 

  21. A. Blais, R-S. Huan, A. Wallraff, S.M. Givin, and R.J. Schoelkopf: Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article  CAS  Google Scholar 

  22. A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P.J.J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T.C. White, Y. Yin, J. Zhao, C.J. Palmstrøm, J.M. Martinis, and A.N. Cleland: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012).

    Article  CAS  Google Scholar 

  23. C.M. Quintana, A. Megrant, Z. Chen, A. Dunsworth, B. Chiaro, R. Barends, B. Campbell, Y. Chen, I-C. Hoi, E. Jeffrey, J. Kelly, J.Y. Mutus, P.J.J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T.C. White, A.N. Cleland, and J.M. Martinis: Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits. Appl. Phys. Lett. 105, 062601 (2014).

    Article  CAS  Google Scholar 

  24. C.J.K. Richardson, N.P. Siwak, J. Hackley, Z.K. Keane, J.E. Robinson, B. Arey, I. Arslan, and B.S. Palmer: Fabrication artifacts and parallel loss channels in metamorphic epitaxial aluminum superconducting resonators. Supercond. Sci. Technol. 29, 064003 (2016).

    Article  CAS  Google Scholar 

  25. J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B.A. Mazin, P.K. Day, and H.G. Leduc: Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators. Appl. Phys. Lett. 92, 152505 (2008).

    Article  CAS  Google Scholar 

  26. J. Wenner, R. Barends, R.C. Bialczak, Y. Chen, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, P.J.J. O’Malley, D. Sank, A. Vainsencher, H. Wang, T.C. White, Y. Tin, J. Zhao, A.N. Cleland, and J.M. Martinis: Surface loss simulations of superconducting coplanar waveguide resonators. Appl. Phys. Lett. 99, 113513 (2011).

    Article  CAS  Google Scholar 

  27. L.J. Zeng, S. Nik, T. Greibe, P. Krantz, C.M. Wilson, P. Delsing, and E. Olsson: Direct observation of the thickness distribution of ultra-thin AlOx barriers in Al/AlOx/Al Josephson junctions. J. Phys. D: Appl. Phys. 48, 395308 (2015).

    Article  CAS  Google Scholar 

  28. Y. Horio: Structural study of Al deposited surface in Si(111) \(\sqrt 3 \times \sqrt 3\)–Al. Appl. Surf. Sci. 169–170, 104 (2001).

    Article  Google Scholar 

  29. Y. Horio: Different growth modes of Al on Si(111) 7 × 7 and Si(111) \(\sqrt 3 \times \sqrt 3\)–Al surfaces. Jpn. J. Appl. Phys., Part 1 38 (8), 4881 (1999).

    Article  CAS  Google Scholar 

  30. Y. Horio: Surface morphology of growing Al on Si(111) 7 × 7 and Si(111) \(\sqrt 3 \times \sqrt 3\)–Al substrates by reflection high-energy electron diffraction. Jpn. J. Appl. Phys., Part 1 39 (7B), 4374 (2000).

    Article  CAS  Google Scholar 

  31. J.J. Lander and J. Morrison: Surface reactions of silicon with aluminum and with indium. Surf. Sci. 2, 553 (1964).

    Article  CAS  Google Scholar 

  32. B.M. McSkimming, A. Alexander, M.H. Samuels, B. Arey, I. Arslan, and C.J.K. Richardson: Metamorphic growth of relaxed single crystalline aluminum on silicon (111). J. Vac. Sci. Technol., A 35 (2), 021401 (2017).

    Article  CAS  Google Scholar 

  33. G.S. Higashi, R.S. Becker, Y.J. Chabal, and A.J. Becker: Comparison of Si(111) surfaces prepared using aqueous solutions of NH4F versus HF. Appl. Phys. Lett. 58 (15), 1656 (1991).

    Article  CAS  Google Scholar 

  34. D. Ali and C.J.K. Richardson: Reflection high-energy electron diffraction evaluation of thermal deoxidation of chemically cleaned Si, SiGe, and Ge layers for solid-source molecular beam epitaxy. J. Vac. Sci. Technol., A 30 (6), 061405 (2012).

    Article  CAS  Google Scholar 

  35. T. Mizutani: Correct substrate temperature monitoring with infrared optical pyrometer for molecular-beam epitaxy of III–V semiconductors. J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 6 (6), 1671 (1988).

    Article  CAS  Google Scholar 

  36. M. Ohring: The Material Science of Thin Films Deposition and Structure, 2nd ed. (Academic Press, San Diego, California, 2002); p. 378.

    Google Scholar 

  37. J.H. van der Merwe: Equilibrium structure of a thin epitaxial film. J. Appl. Phys. 41 (11), 4725 (1970).

    Article  Google Scholar 

  38. W.M. Haynes, ed.: Enthalpy of fusion. In CRC Handbook of Chemistry and Physics, 97th ed. (CRC Press/Taylor & Francis, Boca Raton, Florida, 2017).

    Google Scholar 

  39. F.L. Tang, X.G. Cheng, W.J. Lu, and W.Y. Yu: Premelting of Al nonperfect (111) surface. Phys. B 405, 1248 (2010).

    Article  CAS  Google Scholar 

  40. K. Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi: Structure analysis of Si(111)-7 × 7 reconstructed surface by transmission electron diffraction. Surf. Sci. 164, 367 (1985).

    Article  CAS  Google Scholar 

  41. A. Uemura, A. Ohkita, H. Inaba, S. Hasegawa, and H. Nakashima: Effects of Si reconstruction on growth mode in A1/Si(111) studied by scanning tunneling microscopy. Surf. Sci. 357–358, 825 (1996).

    Article  Google Scholar 

  42. S. Wang, M.W. Radny, and P.V. Smith: Mechanisms for the stability of Al and B adatoms on the Si(111) \(\sqrt 3 \times \sqrt 3 \;R{30^\circ}\) surface. Phys. Rev. B 59 (3), 1594 (1999).

    Article  CAS  Google Scholar 

  43. J.E. Northrup: Si(111) \(\sqrt 3 \times \sqrt 3 \)–Al: An adatom-induced reconstruction. Phys. Rev. Lett. 53 (7), 683 (1984).

    Article  CAS  Google Scholar 

  44. T. Hanada, H. Daimon, and S. Ino: Rocking-curve analysis of reflection high-energy electron diffraction from the Si(111)— \(\left({\sqrt 3 \times \sqrt 3} \right)R{30^\circ}\)–Al, —Ga and —In surfaces. Phys. Rev. B 51 (19), 13320 (1995).

    Article  CAS  Google Scholar 

  45. T. Hoshino, K. Okano, N. Enomoto, M. Hata, and M. Tsuda: Migration process of an Al adatom on the Si(111) surface. Surf. Sci. 423, 117 (1999).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The electron microscopy was conducted at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Alexander.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, A., McSkimming, B.M., Arey, B. et al. Nucleation and growth of metamorphic epitaxial aluminum on silicon (111) 7 × 7 and \(\sqrt 3 \times \sqrt 3\) surfaces. Journal of Materials Research 32, 4067–4075 (2017). https://doi.org/10.1557/jmr.2017.322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.322

Navigation