Skip to main content
Log in

Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the hybrid carbon nanofibers (Cu2O/CNFs) containing cuprous oxide (Cu2O) nanoparticles were prepared by a convenient electrospinning method and following a carbonization treatment. The morphology, composition, and microstructure of the Cu2O/CNFs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffractometer. The as-prepared Cu2O/CNFs exhibited a stronger absorption in the range of 250–700 nm. The band gap energy of the Cu2O/CNFs was estimated to be 2.0 eV. Due to the synergistic effect between photocatalytic activity of Cu2O and excellent adsorption capacity of CNFs, the obtained Cu2O/CNFs exhibited excellent photocatalytic activity for degradation of rhodamine B (RhB) and phenol. The possible mechanism for degradation of RhB and phenol degradation were also discussed. The resultant hybrid carbon composites offer the significant advantages, such as low dosage, high catalytic activity, easy recycling, and excellent stability. We hope that the resultant hybrid composite Cu2O/CNFs could be applied as catalytic materials for further application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Y.S. Ho, J.F. Porter, and G. Mckay: Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water, Air, Soil Pollut. 141, 1 (2002).

    CAS  Google Scholar 

  2. D.W. Chen and A.K. Ray: Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci. 56, 1561 (2001).

    CAS  Google Scholar 

  3. S. Singh, K.C. Barick, and D. Bahadur: Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. J. Mater. Chem. A 1, 3325 (2013).

    CAS  Google Scholar 

  4. A. Shahat, H.M.A. Hassan, and H.M.E. Azzazy: Optical metal-organic framework sensor for selective discrimination of some toxic metal ions in water. Anal. Chim. Acta 793, 90 (2013).

    CAS  Google Scholar 

  5. A. Guldhe, B. Singh, T. Mutanda, K. Permaul, and F. Bux: Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renewable Sustainable Energy Rev. 41, 1447 (2015).

    CAS  Google Scholar 

  6. B. Gao, L.Y. Yang, X.R. Wang, J.C. Zhao, and G.Y. Sheng: Influence of modified soils on the removal of diesel fuel oil from water and the growth of oil degradation micro-organism. Chemosphere 41, 419 (2000).

    CAS  Google Scholar 

  7. Q.Y. Li, Y. Luo, B. Hou, and Z.X. Han: Synthesis and mechanism of flocculating-decolorizing agent PAD used for polymer-sulphonated drilling wastewater. J. Residuals Sci. Technol. 13, 135 (2016).

    CAS  Google Scholar 

  8. C.S. Turchi and D.F. Ollis: Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 122, 178 (1992).

    Google Scholar 

  9. R. Rosal, A. Rodríguez, J.A. Perdigónmelón, A. Petre, M.J. Gómez, and A. Agüera: Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res. 4, 578 (2010).

    Google Scholar 

  10. J.V. Rijn: The potential for integrated biological treatment systems in ecirculating fish culture—A review. Aquaculture 139, 181 (1996).

    Google Scholar 

  11. A. Ried, J. Mielcke, A. Wieland, S. Schaefer, and M. Sievers: An overview of the integration of ozone systems in biological treatment steps. Mucosal Immunol. 3, 461 (2010).

    Google Scholar 

  12. M.R. Hoffmann, S.T. Martin, W.Y. Choi, and D.W. Bahnemann: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).

    CAS  Google Scholar 

  13. A. Mills and S.L. Hunte: An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A 108, 1 (1997).

    CAS  Google Scholar 

  14. Q.J. Xiang, J.G. Yu, and M. Jaroniec: Graphene-based semiconductor photocatalysts. ChemInform 43, 782 (2012).

    Google Scholar 

  15. Y.K. Liu, G.H. Jiang, L. Li, H. Chen, Q. Huang, X.X. Du, and Z.Z. Tong: Electrospun CeO2/Ag@carbon nanofiber hybrids for selective oxidation of alcohols. Powder Technol. 305, 597 (2016).

    Google Scholar 

  16. H. Chen, G.H. Jiang, W.J. Yu, D.P. Liu, Y.K. Liu, L. Li, Q. Huang, Z.Z. Tong, and W.X. Chen: Preparation of electrospun ZnS-loaded hybrid carbon nanofiberic membranes for photocatalytic applications. Powder Technol. 298, 1 (2016).

    CAS  Google Scholar 

  17. K. Nakata and A. Fujishima: TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol., C 13, 169 (2012).

    CAS  Google Scholar 

  18. G.H. Jiang, X.Y. Zheng, Y. Wang, T.W. Li, and X.K. Sun: Photo-degradation of methylene blue by multi-walled carbon nanotubes/TiO2, composites. Powder Technol. 207, 465 (2011).

    CAS  Google Scholar 

  19. A. Linsebigler, L. Guangquan, and J. Yates: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).

    CAS  Google Scholar 

  20. K. Zhu, N. Neale, A. Miedaner, and A. Frank: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 (2007).

    CAS  Google Scholar 

  21. F.X. Xiao: Construction of highly ordered ZnO–TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Appl. Mater. Interfaces 4, 7055 (2016).

    Google Scholar 

  22. I.K. Konstantinou and T.A. Albanis: TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal., B 49, 1 (2004).

    CAS  Google Scholar 

  23. R. Khodayari and I. Odenbrand: Deactivating effects of lead on the selective catalytic reduction of nitric oxide with ammonia over a V2O5/WO3/TiO2 catalyst for waste incineration applications. Ind. Eng. Chem. Res. 37, 1196 (2016).

    Google Scholar 

  24. R. Liu, H.Y. Ye, X.P. Xiong, and H.Q. Liu: Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Mater. Chem. Phys. 121, 432 (2010).

    CAS  Google Scholar 

  25. C.M. Fan, Y.Q. Min, X.G. Hao, Y.P. Sun, X.J. Li, and F.B. Li: Adsorption and photocatalytic degradation of phenol over TiO2/ACF. Trans. Nonferrous Met. Soc. China 13, 452 (2003).

    CAS  Google Scholar 

  26. F. Zewge, R.V.D. Krol, and P.W. Appel: Photoelectrocatalytic removal of color from water using TiO2 and TiO2/Cu2O. Bull. Chem. Soc. Ethiop. 22, 27 (2008).

    CAS  Google Scholar 

  27. Y. Fang, R.J. Wang, G.H. Jiang, H. Jin, Y. Wang, X.K. Sun, S. Wang, and T. Wang: CuO/TiO2, nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials. Bull. Mater. Sci. 35, 495 (2012).

    CAS  Google Scholar 

  28. Z. Wei, G.H. Jiang, L. Shen, X. Li, X.H. Wang, and W.X. Chen: Preparation of Mn-doped BiOBr microspheres for efficient visible-light-induced photocatalysis. MRS Commun. 3, 124 (2013).

    Google Scholar 

  29. G.H. Jiang, B.L. Tang, H. Chen, Y.K. Liu, L. Li, Q. Huang, and W.X. Chen: Controlled growth of hexagonal Zn2GeO4 nanorods on carbon fibers for photocatalytic oxidation of p-toluidine. RSC Adv. 5, 6125 (2015).

    Google Scholar 

  30. G.H. Jiang, X. Li, Z. Wei, T.T. Jiang, X.X. Du, and W.X. Chen: Growth of N-doped BiOBr nanosheets on carbon fibers for photocatalytic degradation of organic pollutants under visible light irradiation. Powder Technol. 260, 84 (2014).

    CAS  Google Scholar 

  31. M. Hara, T. Kondo, M. Komoda, S. Ikeda, J.N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka: Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 3, 357 (1998).

    Google Scholar 

  32. S.F. Chen, S.J. Zhang, W. Liu, and W. Zhao: Study on the photocatalytic activity of p–n junction photocatalyst Cu2O/TiO2. J. Nanosci. Nanotechnol. 9, 4397 (2009).

    CAS  Google Scholar 

  33. F.X. Niu, F. Fu, X.M. Gao, and X.M. Zhang: Preparation of WO3/Cu2O photocatalyst and its application to photocatalytical degradation of phenol. Spec. Petrochem. 31, 6 (2014).

    CAS  Google Scholar 

  34. J. He, D.W. Shao, L.C. Zheng, and R.K. Zheng: Construction of Z-scheme Cu2O/Cu/AgBr/Ag photocatalyst with enhanced photocatalytic activity and stability under visible light. Appl. Catal., B 203, 917 (2017).

    CAS  Google Scholar 

  35. H.L. Xu, W.Z. Wang, and W. Zhu: Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B 110, 13829 (2006).

    CAS  Google Scholar 

  36. M. Zhao, F.J. Shang, Y. Song, F. Wang, Z.T. Zhou, J.G. Lv, and Z.F. Zi: Effect of solution concentration on surface morphology, chemical composition and photoresponse of CuO/Cu2O composite thin films grown by hydrothermal synthesis. J. Mater. Sci. 25, 4877 (2014).

    CAS  Google Scholar 

  37. J.N. Nian, C.C. Hu, and H. Teng: Electrodeposited p-type Cu2O for H2, evolution from photoelectrolysis of water under visible light illumination. Int. J. Hydrogen Energy 33, 2897 (2008).

    CAS  Google Scholar 

  38. G.Q. Zhang, L. Yu, H.B. Wu, H.E. Hoster, and X.W. Lou: Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 24, 4609 (2012).

    CAS  Google Scholar 

  39. Z.Y. Gao, J.L. Liu, F. Xu, D.P. Wu, Z.L. Wu, and K. Jiang: One-pot synthesis of graphene-cuprous oxide composite with enhanced photocatalytic activity. Solid State Sci. 14, 276 (2012).

    CAS  Google Scholar 

  40. J.Y. Li, S.L. Xiong, J. Pan, and Y. Qian: Hydrothermal synthesis and electrochemical properties of urchin-like core–shell copper oxide nanostructures. J. Phys. Chem. C 114, 9645 (2010).

    CAS  Google Scholar 

  41. M. Tahir and N.A.S. Amin: Photocatalytic CO2, reduction with H2, as reductant over copper and indium co-doped TiO2, nanocatalysts in a monolith photoreactor. Appl. Catal., A 493, 90 (2015).

    CAS  Google Scholar 

  42. D.S. Yang, S. Chaudhari, K.P. Rajesh, and J.S. Yu: Preparation of nitrogen-doped porous carbon nanofibers and the effect of porosity, electrical conductivity, and nitrogen content on their oxygen reduction performance. ChemCatChem 6, 1236 (2014).

    CAS  Google Scholar 

  43. B. Yu, Y.K. Liu, G.H. Jiang, D.P. Liu, W.J. Yu, H. Chen, L. Li, Q. Huang, and Z.Z. Tong: Preparation of electrospun Ag nanoparticles and g-C3N4 loaded composite carbon nanofibers for catalytic applications. Mater. Res. Express 4, 015603 (2017).

    Google Scholar 

  44. Y.K. Liu, G.H. Jiang, L. Li, H. Chen, Q. Huang, T.T. Jiang, and X.X. Du: Silver nanoparticles supported on electrospun polyacrylonitrile nanofibrous mats for catalytic applications. MRS Commun. 6, 31 (2016).

    CAS  Google Scholar 

  45. H. Chen, G.H. Jiang, T.T. Jiang, L. Li, Y.K. Liu, Q. Huang, and W.X. Chen: Preparation of Mn-doped ZrO2/TiO2 photocatalysts for efficient degradation of rhodamine B. MRS Commun. 5, 525 (2015).

    CAS  Google Scholar 

  46. Y.K. Liu, G.H. Jiang, L. Li, H. Chen, Q. Huang, T.T. Jiang, X.X. Du, and W.X. Chen: Preparation of Au/PAN nanofibrous membranes for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 50, 8120 (2015).

    CAS  Google Scholar 

  47. H. Chen, G.H. Jiang, W.J. Yu, D.P. Liu, Y.K. Liu, L. Li, Q. Huang, and Z.Z. Tong: Electrospun carbon nanofibers coated with urchin-like ZnCo2O4 nanosheets as a flexible electrode material. J. Mater. Chem. A 4, 5958 (2016).

    CAS  Google Scholar 

  48. E.J. Mi and K.H. Ahn: Fluorogenic and chromogenic detection of palladium species through a catalytic conversion of a rhodamine B derivative. Org. Lett. 12, 2790 (2012).

    Google Scholar 

  49. M.M. Mahlambi, O.T. Mahlangu, G.D. Vilakati, and B.B. Mamba: Visible light photodegradation of rhodamine B dye by two forms of carbon-covered alumina supported TiO2/polysulfone membranes. Ind. Eng. Chem. Res. 53, 5709 (2014).

    CAS  Google Scholar 

  50. H.H.P. Fang and O.C. Chan: Toxicity of phenol towards anaerobic biogranules. Water Res. 31, 2229 (1997).

    CAS  Google Scholar 

  51. D. Daâssi, L. Belbahri, A. Vallat, S. Woodward, M. Nasri, and T. Mechichi: Enhanced reduction of phenol content and toxicity in olive mill wastewaters by a newly isolated strain of Coriolopsis gallica. Environ. Sci. Pollut. Res. 21, 1746 (2014).

    Google Scholar 

  52. H. Keweloh, H.J. Heipieper, and H.J. Rehm: Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl. Microbiol. Biotechnol. 31, 383 (1989).

    CAS  Google Scholar 

  53. Q. Huang, G.H. Jiang, H. Chen, L. Li, Y.K. Liu, Z.Z. Tong, and W.X. Chen: Hierarchical nanostructures of BiOBr/AgBr on electrospun carbon nanofibers with enhanced photocatalytic activity. MRS Commun. 6, 61 (2016).

    CAS  Google Scholar 

  54. C.H. Kuo and M. Huang: Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes. J. Am. Chem. Soc. 130, 12815 (2008).

    CAS  Google Scholar 

  55. F. He, X. Qin, H. Zhang, Y.Q. Yang, X.Y. Zhang, and Y. Yang: Characterization of laccase isoenzymes from the white-rot fungus Ganoderma, sp.En3 and synergistic action of isoenzymes for dye decolorization. J. Chem. Technol. Biotechnol. 90, 2265 (2015).

    CAS  Google Scholar 

  56. M. Asgher, H.N. Bhatti, M. Ashraf, and R.L. Legge: Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzymes. Biodegradation 19, 771 (2008).

    CAS  Google Scholar 

  57. L.L. Sun, G.H. Wang, R. Hao, D.Y. Han, and S. Cao: Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2O-reduced graphene oxide composite microspheres for photodegradation of rhodamine B. Appl. Surf. Sci. 358, 91 (2015).

    CAS  Google Scholar 

  58. A. Abulizi, G.H. Yang, and J.J. Zhu: One-step simple sonochemical fabrication and photocatalytic properties of Cu2O–rGO composites. Ultrason. Sonochem. 21, 129 (2014).

    CAS  Google Scholar 

  59. M. Kurian and S. Sugunan: Wet peroxide oxidation of phenol over mixed pillared montmorillonites. Chem. Eng. J. 115, 139 (2006).

    CAS  Google Scholar 

  60. L.B. Chu, J.L. Wang, J. Dong, H.Y. Liu, and X.L. Sun: Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Chemosphere 86, 409 (2012).

    CAS  Google Scholar 

  61. U. Szewzyk, R. Szewzyk, and B. Schink: Methanogenic degradation of hydroquinone and catechol via reductive dehydroxylation to phenol. FEMS Microbiol. Ecol. 31, 79 (1985).

    CAS  Google Scholar 

  62. F. Mijangos, F. Varona, and N. Villota: Changes in solution color during phenol oxidation by Fenton reagent. Environ. Sci. Technol. 40, 5538 (2006).

    CAS  Google Scholar 

  63. A. Santos, P. Yustos, A. Quintanilla, S. Rodríguez, and F. García-Ochoa: Route of the catalytic oxidation of phenol in aqueous phase. Appl. Catal., B 39, 97 (2002).

    CAS  Google Scholar 

  64. D. Duprez, F. Delanoë, J. Barbier, P. Isnard, and G. Blanchard: Catalytic oxidation of organic compounds in aqueous media. Catal. Today 29, 317 (1996).

    CAS  Google Scholar 

  65. H. Wang, X.J. Yu, and D.Z. Sun: Study on the degradation mechanism of phenol in a new electrochemical oxidation system. Acta Sci. Circumstantiae 25, 901 (2005).

    CAS  Google Scholar 

  66. Y.C. Chang, F.H. Ko, C.J. Ko, and T.C. Chu: Probing the microwave degradation mechanism of phenol-containing polymeric compounds by sample pretreatment and GC-MS analysis. Anal. Chim. Acta 526, 121 (2004).

    CAS  Google Scholar 

  67. A. Turki, C. Guillard, F. Dappozze, Z. Ksibi, G. Berhault, and H. Kochkar: Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: Kinetic study, adsorption isotherms and formal mechanisms. Appl. Catal., B 163, 404 (2015).

    CAS  Google Scholar 

  68. T.T.T. Dang, S.T.T. Le, D. Channei, W. Khanitchaidecha, and A. Nakaruk: Photodegradation mechanisms of phenol in the photocatalytic process. Res. Chem. Intermed. 41, 1 (2016).

    Google Scholar 

  69. H. Zhang, L.X. Zhao, F.L. Geng, L.H. Guo, B. Wan, and Y. Yang: Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation. Appl. Catal., B 180, 656 (2016).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (51373155), Collaborative Innovation Center for Modern Textile Technology of Zhejiang Province (2011-Program) (20160202), and “521 Talents Training Plan” in Zhejiang Sci-Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Huang, Q., Jiang, G. et al. Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation. Journal of Materials Research 32, 3605–3615 (2017). https://doi.org/10.1557/jmr.2017.307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.307

Navigation