Skip to main content

Advertisement

Log in

Facile synthesis of Ni3S2/rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Three-dimensional Ni3S2-reduced graphene oxide (rGO) nanosheets composite is directly grown on nickel foam (Ni3S2-rGO@NF) by a one-step hydrothermal process involving in situ sulfurization of NF and reduction of GO. The introduction of GO is found not only to control the aggregation and the growth of Ni3S2 nanosheets, but also to increase the number of active sites and improve conductivity of composite. The heterogeneous Ni3S2-rGO@NF electrode as electrocatalysts for hydrogen evolution reaction (HER) exhibits significantly enhanced catalytic activity in alkaline media. The onset potential of Ni3S2-rGO@NF can be as low as ∼0 mV, which is comparable to platinum, and only a small overpotential of ∼44 mV is needed to reach a benchmark current density of 10 mA/cm2. Moreover, it demonstrates a good stability. All evidences suggest that the in situ surfurization can be considered as an effective way to prepare metal sulfides as electrocatalysts for hydrogen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. J.A. Turner: Sustainable hydrogen production. Science 305 (5686), 972 (2004).

    CAS  Google Scholar 

  2. Z.H. Pu, Q. Liu, C. Tang, A.M. Asiri, and X.P. Sun: Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 6 (19), 11031 (2014).

    CAS  Google Scholar 

  3. X.X. Zou and Y. Zhang: Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44 (15), 5148 (2015).

    CAS  Google Scholar 

  4. X.D. Yan, L.H. Tian, K.X. Li, S. Atkins, H.F. Zhao, J. Murowchick, L. Liu, and X.B. Chen: FeNi3/NiFeOx nanohybrids as highly efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. Interfaces 3 (22), 1600368 (2016).

    Google Scholar 

  5. J.K. Norskov and C.H. Christensen: Toward efficient hydrogen production at surfaces. Science 312 (5778), 1322 (2006).

    CAS  Google Scholar 

  6. C. Tang, N.Y. Cheng, Z.H. Pu, W. Xing, and X.P. Sun: NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 54 (32), 9351 (2015).

    CAS  Google Scholar 

  7. T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielse, and S. Horch: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317 (5834), 100 (2007).

    CAS  Google Scholar 

  8. M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L.S. Li, and S. Jin: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135 (28), 10274 (2013).

    CAS  Google Scholar 

  9. D.S. Kong, H.T. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, and Y. Cui: Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13 (3), 1341 (2013).

    CAS  Google Scholar 

  10. Z.Z. Wu, B.Z. Fang, A. Bonakdarpour, A.K. Sun, D.P. Wilkinson, and D.Z. Wang: WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Appl. Catal., B 125, 59 (2012).

    CAS  Google Scholar 

  11. J. Lin, Z.W. Peng, G. Wang, D. Zakhidov, E. Larios, M.J. Yacaman, and J.M. Tour: Enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Adv. Energy Mater. 4 (10), 201301875 (2014).

    Google Scholar 

  12. H.T. Wang, D.S. Kong, P. Johanes, J.J. Cha, G.Y. Zheng, K. Yan, N. Liu, and Y. Cui: MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 13 (7), 3426 (2013).

    CAS  Google Scholar 

  13. J. Zhang, S.H. Liu, H.W. Liang, R.H. Dong, and X.L. Feng: Hierarchical transition-metal dichalcogenide nanosheets for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 27 (45), 7426 (2015).

    CAS  Google Scholar 

  14. M.S. Faber, R. Dziedzic, M.A. Lukowski, N.S. Kaiser, Q. Ding, and S. Jin: High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 136 (28), 10053 (2014).

    CAS  Google Scholar 

  15. Y. Qu, M. Yang, J. Chai, Z. Tang, M. Shao, C.T. Kwok, M. Yang, Z. Wang, D. Chua, S. Wang, Z. Lu, and H. Pan: Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9 (7), 5959 (2017).

    CAS  Google Scholar 

  16. Y. Jiao, Y. Zheng, M. Jaroniec, and S.Z. Qiao: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44 (8), 2060 (2015).

    CAS  Google Scholar 

  17. C. Tang, L. Gan, R. Zhang, W. Lu, X. Jiang, A.M. Asiri, X. Sun, J. Wang, and L. Chen: Ternary FexCo1−xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight. Nano Lett. 16 (10), 6617 (2016).

    CAS  Google Scholar 

  18. J. Yuan, J. Wu, W.J. Hardy, P. Loya, M. Lou, Y. Yang, S. Najmaei, M. Jiang, F. Qin, K. Keyshar, H. Ji, W. Gao, J. Bao, J. Kono, D. Natelson, P.M. Ajayan, and J. Lou: Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction. Adv. Mater. 27 (37), 5605 (2015).

    CAS  Google Scholar 

  19. X.M. Geng, W. Wu, N. Li, W.W. Sun, J. Armstrong, A. Al-hilo, M. Brozak, J.B. Cui, and T.P. Chen: Three-dimensional structures of MoS2 nanosheets with ultrahigh hydrogen evolution reaction in water reduction. Adv. Funct. Mater. 24 (39), 6123 (2014).

    CAS  Google Scholar 

  20. C. Tsai, F. Abild-Pedersen, and J.K. Nørskov: Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14 (3), 1381 (2014).

    CAS  Google Scholar 

  21. J. Kibsgaard, Z.B. Chen, B.N. Reinecke, and T.F. Jaramillo: Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11 (11), 963 (2012).

    CAS  Google Scholar 

  22. J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, and Y. Xie: Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25 (40), 5807 (2013).

    CAS  Google Scholar 

  23. T.Y. Wang, L. Liu, Z.W. Zhu, P. Papakonstantinou, J.B. Hu, H.Y. Liu, and M.X. Li: Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 6 (2), 625 (2013).

    CAS  Google Scholar 

  24. T.S. Hu, K. Bian, G.A. Tai, T. Zeng, X.F. Wang, X.H. Huang, K. Xiong, and K.J. Zhu: Oxidation-sulfidation approach for vertically growing MoS2 nanofilms catalysts on molybdenum foils as efficient HER catalysts. J. Phys. Chem. C 120 (45), 25843 (2016).

    CAS  Google Scholar 

  25. L. Liao, J. Zhu, X.J. Bian, L.N. Zhu, M.D. Scanlon, H.H. Girault, and B.H. Liu: MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 23 (42), 5326 (2013).

    CAS  Google Scholar 

  26. Y.J. Chang, C.T. Lin, T.Y. Chen, C.L. Hsu, Y.H. Lee, W. Zhang, K.H. Wei, and L.J. Li: Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 25 (5), 756 (2013).

    CAS  Google Scholar 

  27. E.G.S. Firmiano, M.A.L. Cordeiro, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, and E.R. Leite: Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem. Commun. 48 (62), 7687 (2012).

    CAS  Google Scholar 

  28. J. Guo, J. Wang, Z. Wu, W. Lei, J. Zhu, K. Xia, and D. Wang: Controllable synthesis of molybdenum-based electrocatalysts for a hydrogen evolution reaction. J. Mater. Chem. A 5 (2), 4879 (2017).

    CAS  Google Scholar 

  29. X.L. Zheng, J.B. Xu, K.Y. Yan, H. Wang, Z.L. Wang, and S.H. Yang: Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem. Mater. 26 (7), 2344 (2014).

    CAS  Google Scholar 

  30. C. Tang, L. Xie, X. Sun, A.M. Asiri, and Y. He: Highly efficient electrochemical hydrogen evolution based on nickel diselenide nanowall film. Nanotechnology 27 (20), 20LT02 (2016).

    Google Scholar 

  31. P. Jiang, Q. Liu, and X. Sun: NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 6 (22), 13440 (2014).

    CAS  Google Scholar 

  32. Y.Y. Wu, G.D. Li, Y.P. Liu, L. Yang, X.R. Lian, T. Asefa, and X.X. Zou: Overall water splitting catalyzed efficiently by and ultrathin nanosheet-built hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 26 (27), 4839 (2016).

    CAS  Google Scholar 

  33. G.F. Chen, T.Y. Ma, Z.Q. Liu, N. Li, Y.Z. Su, K. Davey, and S.Z. Qiao: Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 26 (19), 3314 (2016).

    CAS  Google Scholar 

  34. C.B. Ouyang, X. Wang, C. Wang, X.X. Zhang, J.H. Wu, Z.L. Ma, S. Dou, and S.Y. Wang: Hierarchically porous Ni3S2 nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction. Electrochim. Acta 174, 297 (2015).

    CAS  Google Scholar 

  35. L.L. Feng, G.T. Yu, Y.Y. Wu, G.D. Li, H. Li, Y.H. Sun, T. Asefa, W. Chen, and X.X. Zou: High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137 (44), 14023 (2015).

    CAS  Google Scholar 

  36. T.W. Lin, C.J. Liu, and C.S. Dai: Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection. Appl. Catal., B 154–155, 213 (2014).

    Google Scholar 

  37. N. Jiang, L. Bogoev, M. Popova, S. Gul, J. Yano, and Y.J. Sun: Electrodeposited nickel–sulfide films as competent hydrogen evolution catalysts in neutral water. J. Mater. Chem. A 2 (45), 19407 (2014).

    CAS  Google Scholar 

  38. C. Tang, Z.H. Pu, Q. Liu, A.M. Asiri, Y.L. Luo, and X.P. Sun: Ni3S2 nanosheets array supported on Ni foam: A novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions. Int. J. Hydrogen Energy 40 (14), 4727 (2015).

    CAS  Google Scholar 

  39. X.D. Yan, L.H. Tian, M. He, and X.B. Chen: Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 15 (9), 6015 (2015).

    CAS  Google Scholar 

  40. X. Yan, K. Li, L. Lyu, F. Song, J. He, D.M. Niu, L. Liu, X.L. Hu, and X.B. Chen: From water oxidation to reduction: Transformation from NixCo3−xO4 nanowires to NiCo/NiCoOx heterostructures. ACS Appl. Mater. Interfaces 8 (5), 3208 (2016).

    CAS  Google Scholar 

  41. Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen, G.M. Zhou, F. Li, and H.M. Cheng: Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4 (6), 3187 (2010).

    CAS  Google Scholar 

  42. X. Huang, Z.Y. Zeng, Z.X. Fan, J.Q. Liu, and H. Zhang: Graphene-based electrodes. Adv. Mater. 24 (45), 5979 (2012).

    CAS  Google Scholar 

  43. D. Merki, S. Fierro, H. Vrubel, and X.L. Hu: Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2 (7), 1262 (2011).

    CAS  Google Scholar 

  44. J.L. Lv, H. Miura, M. Yang, and T.X. Liang: Synthesis of Ni3S2 nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction. Appl. Surf. Sci. 399, 769 (2017).

    CAS  Google Scholar 

  45. X. Yan, L. Tian, and X. Chen: Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. J. Power Sources 300, 336 (2015).

    CAS  Google Scholar 

  46. Y.Q. Teng, H.L. Zhao, Z.J. Zhang, Z.L. Li, Q. Xia, Y. Zhang, L.N. Zhao, X.F. Du, Z.H. Du, P.P. Lv, and K. Świerczek: MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10 (9), 8526 (2016).

    CAS  Google Scholar 

  47. G. Zhou, D.W. Wang, L.C. Yin, N. Li, F. Li, and H.M. Cheng: Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6 (4), 3214 (2012).

    CAS  Google Scholar 

  48. V-D. Dao, N.T.Q. Hoa, L.L. Larina, J-K. Lee, and H-S. Choi: Graphene–platinum nanohybrid as a robust and low-cost counter electrode for dye-sensitized solar cells. Nanoscale 5, 12237 (2013).

    CAS  Google Scholar 

  49. H.Y. Jin, J. Wang, D.F. Su, Z.Z. Wei, Z.F. Pang, and Y. Wang: In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 137 (7), 2688 (2015).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant No. 51372080) and the Research Foundation of Education Bureau of Hunan Province, China (Grant Nos. 16C0717 and 17K039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minjie Zhou or Yafei Kuang.

Supplementary Material

43578_2018_33050519_MOESM1_ESM.docx

Facile Synthesis of Ni3S2/rGO Nanosheets Composite on Nickel Foam as Efficient Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Media (approximately 1.11 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Zhou, M., Hou, Z. et al. Facile synthesis of Ni3S2/rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Journal of Materials Research 33, 519–527 (2018). https://doi.org/10.1557/jmr.2017.270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.270

Navigation