Skip to main content
Log in

Two-dimensional Frank-van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pulsed laser deposition is one of the most flexible growth methods for high-quality epitaxial multifunctional thin films and short-period superlattices. The following examples of current research interest demonstrate the state-of-the art: First, it is shown that the magnetoelectric performance of multiferroic BiFeO3-BaTiO3 (001)-oriented superlattices depends on the crystalline coherence of the different layers at the interfaces. Second, it is exemplified that dielectric-plasmonic superlattices built from the electrically insulating oxide MgO and the metallically conducting nitride TiN are promising metamaterials with hyperbolic dispersion. As a third example, it is demonstrated that LaNiO3- and LaMnO3-based superlattices with (001)-, (011)-, and (111)-out-of-plane orientation and controlled single layer thickness from 2 to 15 atomic monolayers show metal-insulator transitions and tunable gaps, in partial agreement with density functional theory calculations. Underlined by these examples, it is shown that the precise control of an epitaxially coherent, or two-dimensional layer-by-layer growth, named after Jan van der Merwe, is a prerequisite to achieve the desired functionality of oxide-oxide and oxide-nitride superlattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J. Mannhart and D.G. Schlom: Oxide interfaces—An opportunity for electronics. Science 327, 1607 (2010).

    Article  CAS  Google Scholar 

  2. M. Lorenz, M.S. Ramachandra Rao, T. Venkatesan, E. Fortunato, P. Barquinha, R. Branquinho, D. Salgueiro, R. Martins, E. Carlos, A. Liu, F.K. Shan, M. Grundmann, H. Boschker, J. Mukherjee, M. Priyadarshini, N. DasGupta, D.J. Rogers, F.H. Teherani, E.V. Sandana, P. Bove, K. Rietwyk, A. Zaban, A. Veziridis, A. Weidenkaff, M. Muralidhar, M. Murakami, S. Abel, J. Fompeyrine, J. Zuniga-Perez, R. Ramesh, N.A. Spaldin, S. Ostanin, V. Borisov, I. Mertig, V. Lazenka, G. Srinivasan, W. Prellier, M. Uchida, M. Kawasaki, R. Pentcheva, P. Gegenwart, F. Miletto Granozio, J. Fontcuberta, and N. Pryds: The 2016 oxide electronic materials and oxide interfaces roadmap. J. Phys. D: Appl. Phys. 49, 433001 (2016).

    Article  CAS  Google Scholar 

  3. M. Lorenz, M. Brandt, G. Wagner, H. Hochmuth, G. Zimmermann, H. von Wenckstern, and M. Grundmann: MgZnO:P homoepitaxy by pulsed laser deposition: Pseudomorphic layer-by-layer growth and high electron mobility. Proc. SPIE 7217, 72170N (2009).

    Article  Google Scholar 

  4. M. Lorenz and M.S. Ramachandra Rao: Preface to special issue “25 years of pulsed laser deposition”. J. Phys. D: Appl. Phys. 47, 030301 (2014); see also following articles.

    Article  CAS  Google Scholar 

  5. M. Lorenz: Pulsed laser deposition of ZnO-based thin films, chapter 7. In Transparent Conductive Zinc Oxide. Basics and Applications in Thin Film Solar Cells, K. Ellmer, A. Klein, and B. Rech, eds.; Springer Series in Materials Science, Vol. 104 (Springer, Berlin, 2008); p. 303.

    Chapter  Google Scholar 

  6. H. von Wenckstern, H. Schmidt, C. Hanisch, M. Brandt, C. Czekalla, G. Benndorf, G. Biehne, A. Rahm, H. Hochmuth, M. Lorenz, and M. Grundmann: Homoepitaxy of ZnO by pulsed-laser deposition. Phys. Status Solidi RRL 1, 129 (2007).

    Article  CAS  Google Scholar 

  7. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki: Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42 (2005).

    Article  CAS  Google Scholar 

  8. M. Karger and M. Schilling: Epitaxial properties of Al-doped ZnO thin films grown by pulsed laser deposition on SrTiO3(001). Phys. Rev. B 71, 075304 (2005).

    Article  CAS  Google Scholar 

  9. J. Zippel, M. Lorenz, G. Benndorf, and M. Grundmann: Persistent layer-by-layer growth for pulsed-laser homoepitaxy of (0001) ZnO. Phys. Status Solidi RRL 6, 433 (2012).

    Article  CAS  Google Scholar 

  10. G. Koster, G.J.H.M. Rijnders, D.H.A. Blank, and H. Rogalla: Imposed layer-by-layer growth by pulsed laser interval deposition. Appl. Phys. Lett. 74, 3729 (1999).

    Article  CAS  Google Scholar 

  11. M. Lorenz, V. Lazenka, P. Schwinkendorf, F. Bern, M. Ziese, H. Modarresi, A. Volodin, M.J. Van Bael, K. Temst, A. Vantomme, and M. Grundmann: Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: Strain engineering and magnetoelectric coupling. J. Phys. D: Appl. Phys. 47, 135303 (2014).

    Article  CAS  Google Scholar 

  12. M. Lorenz, G. Wagner, V. Lazenka, P. Schwinkendorf, H. Modarresi, M.J. Van Bael, A. Vantomme, K. Temst, O. Oeckler, and M. Grundmann: Correlation of magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices with oxygen vacancies and antiphase octahedral rotations. Appl. Phys. Lett. 106, 012905 (2015).

    Article  CAS  Google Scholar 

  13. M. Lorenz, V. Lazenka, P. Schwinkendorf, M.J. Van Bael, A. Vantomme, K. Temst, M. Grundmann, and T. Höche: Epitaxial coherence at interfaces as origin of high magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices. Adv. Mater. Interfaces 3, 1500822 (2016).

    Article  CAS  Google Scholar 

  14. V. Lazenka, M. Lorenz, H. Modarresi, M. Bisht, R. Rüffer, M. Bonholzer, M. Grundmann, M.J. Van Bael, A. Vantomme, and K. Temst: Magnetic spin structure and magnetoelectric coupling in BiFeO3–BaTiO3 multilayer. Appl. Phys. Lett. 106, 082904 (2015).

    Article  CAS  Google Scholar 

  15. C.A.F. Vaz, J. Hoffman, C.H. Ahn, and R. Ramesh: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900 (2010).

    Article  CAS  Google Scholar 

  16. J. Ma, J. Hu, Z. Li, and C-W. Nan: Recent progress in multiferroic magnetoelectric composites: From bulk to thin film. Adv. Mater. 23, 1062 (2011).

    Article  CAS  Google Scholar 

  17. S. Priya, S.C. Yang, D. Maurya, and Y. Yan: Recent advances in piezoelectric and magnetoelectric materials phenomena. In Composite Magnetoelectrics—Materials, Structures and Applications, G. Srinivasan, S. Priya, and N.X. Sun, eds.; Woodhead Publishing Series in Electronic and Optical Materials No. 62 (Elsevier, Amsterdam, 2015); pp. 103–157.

    Chapter  Google Scholar 

  18. N. Feng, W. Mi, X. Wang, Y. Cheng, and U. Schwingenschlögl: Superior properties of energetically stable La2/3Sr1/3MnO3/tetragonal BiFeO3 multiferroic superlattices. ACS Appl. Mater. Interfaces 7, 10612 (2015).

    Article  CAS  Google Scholar 

  19. R. Gupta, S. Chaudhary, and R.K. Kotnala: Interfacial charge induced magnetoelectric coupling at BiFeO3/BaTiO3 bilayer interface. ACS Appl. Mater. Interfaces 7, 8472 (2015).

    Article  CAS  Google Scholar 

  20. R.K. Kotnala, R. Gupta, and S. Chaudhary: Giant magnetoelectric coupling interaction in BaTiO3/BiFeO3/BaTiO3 trilayer multiferroic heterostructures. Appl. Phys. Lett. 107, 082908 (2015).

    Article  CAS  Google Scholar 

  21. A.F. Popkov, M.D. Davydova, K.A. Zvezdin, S.V. Solov’yov, and A.K. Zvezdin: Origin of the giant linear magnetoelectric effect in perovskitelike multiferroic BiFeO3. Phys. Rev. B 93, 094435 (2016).

    Article  CAS  Google Scholar 

  22. M. Lorenz, A. de Pablos-Martin, C. Patzig, M. Stölzel, K. Brachwitz, H. Hochmuth, M. Grundmann, and T. Höche: Highly textured fresnoite thin films synthesized in situ by pulsed laser deposition with CO2 laser direct heating. J. Phys. D: Appl. Phys. 47, 034013 (2014).

    Article  CAS  Google Scholar 

  23. P. Hansmann, X.P. Yang, A. Toschi, G. Khaliullin, O.K. Andersen, and K. Held: Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103, 016401 (2009).

    Article  CAS  Google Scholar 

  24. D. Doennig, W.E. Pickett, and R. Pentcheva: Confinement-driven transitions between topological and Mott phases in (LaNiO3)N/(LaAlO3)M (111) superlattices. Phys. Rev. B 89, 121110(R) (2014).

    Article  CAS  Google Scholar 

  25. D. Doennig, S. Baidya, W.E. Pickett, and R. Pentcheva: Design of Chern and Mott insulators in buckled 3d oxide honeycomb lattices. Phys. Rev. B 93, 165145 (2016).

    Article  CAS  Google Scholar 

  26. H.M. Wei, M. Jenderka, M. Bonholzer, M. Grundmann, and M. Lorenz: Modeling the conductivity around the dimensionality-controlled metal-insulator transition in LaNiO3/LaAlO3 (001) superlattices. Appl. Phys. Lett. 106, 042103 (2015).

    Article  CAS  Google Scholar 

  27. H.M. Wei, M. Grundmann, and M. Lorenz: Confinement-driven metal-insulator transition and polarity-controlled conductivity of epitaxial LaNiO3/LaAlO3 (111) superlattices. Appl. Phys. Lett. 109, 082108 (2016).

    Article  CAS  Google Scholar 

  28. H.M. Wei, J.L. Barzola-Quiquia, C. Yang, C. Patzig, T. Höche, P. Esquinazi, M. Grundmann, and M. Lorenz: Charge transfer-induced magnetic exchange bias and electron localization in (111)- and (001)-oriented LaNiO3/LaMnO3 superlattices. Appl. Phys. Lett. 110, 102403 (2017).

    Article  CAS  Google Scholar 

  29. J. Sass, K. Mazur, B. Surma, F. Eichhorn, D. Litwin, J. Galas, and S. Sitarek: X-ray studies of ultra-thin Si wafers for mirror application. Nucl. Instrum. Methods Phys. Res., Sect. B 253, 236 (2006).

    Article  CAS  Google Scholar 

  30. M. Kawasaki, A. Ohtomo, T. Arakane, K. Takahashi, M. Yoshimoto, and H. Koinuma: Atomic control of SrTiO3 surface for perfect epitaxy of perovskite oxides. Appl. Surf. Sci. 107, 102 (1996).

    Article  CAS  Google Scholar 

  31. G. Koster, G. Rijnders, D.H.A. Blank, and H. Rogalla: Surface morphology determined by (001) single-crystal SrTiO3 termination. Physica C 339, 215 (2000).

    Article  CAS  Google Scholar 

  32. H.M. Wei: Conductivity behavior of LaNiO3- and LaMnO3-based thin film superlattices. Ph.D. thesis, Universität Leipzig, Fakultät für Physik und Geowissenschaften, Leipzig, Germany, 2017.

    Google Scholar 

  33. M. Bonholzer, M. Lorenz, and M. Grundmann: TiN layer-by-layer growth of TiN by pulsed laser deposition on in situ annealed (100) MgO substrates. Phys. Status Solidi A 211, 2621 (2014).

    Article  CAS  Google Scholar 

  34. M. Lorenz, H. Hochmuth, C. Grüner, H. Hilmer, A. Lajn, D. Spemann, M. Brandt, J. Zippel, R. Schmidt-Grund, H. von Wenckstern, and M. Grundmann: Oxide thin film heterostructures on large area, with flexible doping, low dislocation density, and abrupt interfaces: Grown by pulsed laser deposition. Laser Chem. 2010, 140976 (2010).

    Article  Google Scholar 

  35. Th. Höche, J.W. Gerlach, and T. Petsch: Static-charging mitigation and contamination avoidance by selective carbon coating of TEM samples. Ultramicroscopy 106, 981 (2006).

    Article  CAS  Google Scholar 

  36. M. Lorenz, D. Hirsch, C. Patzig, T. Höche, S. Hohenberger, H. Hochmuth, V. Lazenka, K. Temst, and M. Grundmann: Correlation of interface impurities and chemical gradients with high magnetoelectric coupling strength in multiferroic BiFeO3–BaTiO3 superlattices. ACS Appl. Mater. Interfaces 9, 18956–18965 (2017).

    Article  CAS  Google Scholar 

  37. G.V. Naik, J.L. Schroeder, X. Ni, A.V. Kildishev, T.D. Sands, and A. Boltasseva: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478 (2012).

    Article  CAS  Google Scholar 

  38. A. Salandrino and N. Engheta: Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B 74, 075103 (2006).

    Article  CAS  Google Scholar 

  39. G.V. Naik, B. Saha, J. Liu, S.M. Saber, E.A. Stach, J.M.K. Irudayaraj, T.D. Sands, V.M. Shalaev, and A. Boltasseva: Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc. Natl. Acad. Sci. U. S. A. 111, 7546 (2014).

    Article  CAS  Google Scholar 

  40. A.V. Boris, Y. Matiks, E. Benckiser, A. Frano, P. Popovich, V. Hinkov, P. Wochner, M.C. Colin, E. Detemple, V.K. Malik, C. Bernhard, T. Prokscha, A. Suter, Z. Salman, E. Morenzoni, G. Cristiani, H.U. Habermeier, and B. Keimer: Dimensionality control of electronic phase transitions in nickel–oxide superlattices. Science 332, 937 (2011).

    Article  CAS  Google Scholar 

  41. M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J-M. Triscone: Exchange bias in LaNiO3–LaMnO3 superlattices. Nat. Mater. 11, 195 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Gabriele Ramm and Monika Hahn for PLD target preparation, and single crystal substrate preparation, respectively. We kindly acknowledge the financial support from the Deutsche Forschungsgemeinschaft within SFB 762 “Functionality of Oxide Interfaces”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lorenz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenz, M., Wei, H., Jung, F. et al. Two-dimensional Frank-van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition. Journal of Materials Research 32, 3936–3946 (2017). https://doi.org/10.1557/jmr.2017.266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.266

Navigation