Skip to main content
Log in

Dispersion of antimony doped tin oxide nanopowders for preparing transparent thermal insulation water-based coatings

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Antimony doped tin oxide (ATO) is an ideal material for thermal insulation. To obtain the stable performance of ATO nanodispersions and measure the transparent and thermal insulation properties of the ATO coatings, we investigated how a dispersant and sand milling affect the stability of ATO dispersion, which has come to the results that adding an appropriate dispersant and sand milling for 2.0 h were beneficial to the ATO dispersion. We characterized the morphology, nanostructure, particle size distribution, zeta potential, and optical properties of the ATO dispersions by a transmission electron microscope (TEM), a laser particle size analyzer, and a spectrometer. The results show that the average particle size of the dispersions is about 50 nm and their absolute values of all zeta potentials are more than 40 mV. We coated the thermal insulation water-based coatings on quartz glasses by spin coating method, the effect of thermal insulation is evident with the increase of the ATO content, and there exists approximately 10 °C difference between the ATO sample and blank sample with the condition for maintaining high transmittance of visual light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. K-M. Zhang and Z-G. Wen: Review and challenges of policies of environmental protection and sustainable development in China. J. Environ. Manage. 88, 1249 (2008).

    Article  Google Scholar 

  2. Q. Wang and Y. Chen: Energy saving and emission reduction revolutionizing China’s environmental protection. Renewable Sustainable Energy Rev. 14, 535 (2010).

    Article  CAS  Google Scholar 

  3. C. Filippín, S.F. Larsen, A. Beascochea, and G. Lesino: Response of conventional and energy-saving buildings to design and human dependent factors. Sol. Energy 78, 455 (2005).

    Article  Google Scholar 

  4. T.C. Lowe, A. Bishop, C. Burns, A. Hartford, D. Parkin, and J. Trewhella: Nanoscale science and technology at Los Alamos National Laboratory. J. Nanopart. Res. 2, 249 (2000).

    Article  CAS  Google Scholar 

  5. K. Ariga, H. Ito, J.P. Hillab, and H. Tsukube: Molecular recognition: From solution science to nano/materials technology. Chem. Soc. Rev. 41, 5800 (2012).

    Article  CAS  Google Scholar 

  6. M. Tang, Y.Q. Guo, J. Yuan, Q. Wei, S.J. Sun, W. Zhou, and Y. Zhang: Review of some recent progress on materials science researches in China. Sci. China: Chem. 55, 2497 (2012).

    Article  CAS  Google Scholar 

  7. X.J. Duan and C.M. Lieber: Nanoscience and the nano-bioelectronics frontier. Nano Res. 8, 1 (2015).

    Article  Google Scholar 

  8. G.H. Shih, C.G. Allen, and B.G. Potter, Jr.: RF-sputtered Ge–ITO nanocomposite thin films for photovoltaic applications. Sol. Energy Mater. Sol. Cells 94, 797 (2010).

    Article  CAS  Google Scholar 

  9. H. Hosono: Recent progress in transparent oxide semiconductors: Materials and device application. Thin Solid Films 515, 6000 (2007).

    Article  CAS  Google Scholar 

  10. V. Senthilkumar, P. Vickraman, and R. Ravikumar: Synthesis of fluorine doped tin oxide nanoparticles by sol–gel technique and their characterization. J. Sol-Gel Sci. Technol. 53, 316 (2010).

    Article  CAS  Google Scholar 

  11. K. Ravichandran, P. Ravikumar, and B. Sakthivel: Fabrication of protective over layer for enhanced thermal stability of zinc oxide based TCO films. Appl. Surf. Sci. 287, 323 (2013).

    Article  CAS  Google Scholar 

  12. S. Sharma, A.M. Volosin, D. Schmitt, and D-K. Seo: Preparation and electrochemical properties of nanoporous transparent antimony-doped tin oxide (ATO) coatings. J. Mater. Chem. A 1, 699 (2013).

    Article  CAS  Google Scholar 

  13. X. Hou, K-L. Choy, and J-P. Liu: Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition. J. Nanosci. Nanotechnol. 11, 8114 (2011).

    Article  CAS  Google Scholar 

  14. G. Song, J. Ryu, S. Ko, B.M. Bang, S. Choi, M. Shin, S-Y. Lee, and S. Park: Revisiting surface modification of graphite: Dual-layer coating for high-performance lithium battery anode materials. Chem.–Asian J. 11, 1711 (2016).

    Article  CAS  Google Scholar 

  15. H. Sun, X. Liu, B.S. Liu, and Z.D. Yin: Preparation and properties of antimony doped tin oxide nanopowders and their conductivity. Mater. Res. Bull. 83, 354 (2016).

    Article  CAS  Google Scholar 

  16. S-W. Seo, S.H. Won, H. Chae, and S.M. Cho: Low-temperature growth of highly conductive and transparent aluminum-doped ZnO film by ultrasonic-mist deposition. Korean J. Chem. Eng. 29, 525 (2012).

    Article  CAS  Google Scholar 

  17. D. Zhang, Y. Tang, F. Jiang, Z. Han, and J. Chen: Electrodeposition of silver nanoparticle arrays on transparent conductive oxides. Appl. Surf. Sci. 369, 178 (2016).

    Article  CAS  Google Scholar 

  18. T. Minami: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35 (2005).

    Article  CAS  Google Scholar 

  19. M. Zhou, H. Zhu, Y. Jiao, Y. Rao, S. Hark, Y. Liu, L. Peng, and Q. Li: Optical and electrical properties of Ga-doped ZnO nanowire arrays on conducting substrates. J. Phys. Chem. C 113, 8945 (2009).

    Article  CAS  Google Scholar 

  20. A. AlKahlout: A wet chemical preparation of transparent conducting thin films of Ga-doped ZnO nanoparticles. J. Sol-Gel Sci. Technol. 67, 331 (2013).

    Article  CAS  Google Scholar 

  21. S. Cimitan, S. Albonetti, L. Forni, F. Peri, and D. Lazzari: Solvothermal synthesis and properties control of doped ZnO nanoparticles. J. Colloid Interface Sci. 329, 73 (2009).

    Article  CAS  Google Scholar 

  22. B-R. Koo and H-J. Ahn: Structural, electrical, and optical properties of Sb-doped SnO2 transparent conductive oxides fabricated using an electrospray technique. Ceram. Int. 40, 4375 (2014).

    Article  CAS  Google Scholar 

  23. D-W. Kim, D-S. Kim, Y-G. Kim, Y-C. Kim, and S-G. Oh: Preparation of hard agglomerates free and weakly agglomerated antimony doped tin oxide (ATO) nanoparticles by coprecipitation reaction in methanol reaction medium. Mater. Chem. Phys. 97, 452 (2006).

    Article  CAS  Google Scholar 

  24. H.F. Lu, R.Y. Hong, L.S. Wang, H.D. Xie, and S.Q. Zhao: Preparation of ATO nanorods and electrical resistivity analysis. Mater. Lett. 68, 237 (2012).

    Article  CAS  Google Scholar 

  25. L.S. Wang, H.F. Lu, R.Y. Hong, and W.G. Feng: Synthesis and electrical resistivity analysis of ATO-coated talc. Powder Technol. 224, 124 (2012).

    Article  CAS  Google Scholar 

  26. H. Liu, Q. Li, L. Wang, Y. Mao, and C. Wu: Effect of SnO2 and Sb doped SnO2 on the structure and electrical conductivity of epichlorohydrin rubber. Polym. Compos. 37, 2411 (2016).

    Article  CAS  Google Scholar 

  27. Y. Li, J. Wang, B. Feng, K. Duan, and J. Weng: Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles with high conductivity using a facile ammonia-diffusion co-precipitation method. J. Alloys Compd. 634, 37 (2015).

    Article  CAS  Google Scholar 

  28. X. Wang, Y. Hu, L. Song, W. Xing, H. Lu, P. Lv, and G. Jie: Effect of antimony doped tin oxide on behaviors of waterborne polyurethane acrylate nanocomposite coatings. Surf. Coat. Technol. 205, 1864 (2010).

    Article  CAS  Google Scholar 

  29. N. Li, Q. Meng, and N. Zhang: Dispersion stabilization of antimony-doped tin oxide (ATO) nanoparticles used for energy-efficient glass coating. Particuology 17, 49 (2014).

    Article  CAS  Google Scholar 

  30. E. Redel, C. Huai, Ö. Dag, S. Petrov, P.G. O’Brien, M.G. Helander, J. Mlynarski, and G.A. Ozin: From bare metal powders to colloidally stable TCO dispersions and transparent nanoporous conducting metal oxide thin films. Small 8, 3806 (2012).

    Article  CAS  Google Scholar 

  31. K. Peters, P. Zeller, G. Stefanic, V. Skoromets, H. Nemec, P. Kuzel, and D. Fattakhova-Rohlfing: Water-dispersible small monodisperse electrically conducting antimony doped tin oxide nanoparticles. Chem. Mater. 27, 1090 (2015).

    Article  CAS  Google Scholar 

  32. Y-S. Cho, H-M. Kim, J-J. Hong, G-R. Yi, S.H. Jang, and S-M. Yang: Dispersion stabilization of conductive transparent oxide nanoparticles. Colloids Surf., A 336, 88 (2009).

    Article  CAS  Google Scholar 

  33. J. Liu, Q. Xu, F. Shi, S. Liu, J. Luo, L. Bao, and X. Feng: Dispersion of Cs0.33WO3 particles for preparing its coatings with higher near infrared shielding properties. Appl. Surf. Sci. 309, 175 (2014).

    Article  CAS  Google Scholar 

  34. C. Biswas, K.K. Kim, H-Z. Geng, H.K. Park, S.C. Lim, S.J. Chae, S.M. Kim, and Y.H. Lee: Strategy for high concentration nanodispersion of single-walled carbon nanotubes with diameter selectivity. J. Phys. Chem. C 113, 10044 (2009).

    Article  CAS  Google Scholar 

  35. S. Sung and D.S. Kim: UV-curing and mechanical properties of polyester acrylate nanocomposites films with silane-modified antimony doped tin oxide nanoparticles. J. Appl. Polym. Sci. 129, 1340 (2013).

    Article  CAS  Google Scholar 

  36. S.X. Luo, Z. Song, and J.L. Li: Research on the dispersion uniformity and stability of nano-ATO. J. Funct. Mater. 44, 1603 (2013).

    CAS  Google Scholar 

  37. Q. Tan, G. Yu, Y. Liao, B.N. Hu, and X.Y. Zhang: Preparation of stable aqueous suspensions of antimony-doped tin oxide nanoparticles used for transparent and thermal insulation fluorocarbon coating. Colloid Polym. Sci. 292, 3233 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors declare no competing financial interest. We gratefully acknowledge support from the Nanning Science and Technology Project (Grant No. 20155347) and the Guangxi Nonferrous Metals and Featured Materials Processing Laboratory Foundation (Grant No. GXKFJ12-20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Sun or Zuodong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Liu, B., Liu, X. et al. Dispersion of antimony doped tin oxide nanopowders for preparing transparent thermal insulation water-based coatings. Journal of Materials Research 32, 2414–2422 (2017). https://doi.org/10.1557/jmr.2017.211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.211

Navigation