Skip to main content

Advertisement

Log in

Spiky niobium oxide nanoparticles through hydrothermal synthesis

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of ceramic nanomaterials with unique structure is necessary for discovery of novel property. We developed a novel niobium oxide nanoparticles with a spiky morphology. The spiky structure was composed of two kinds of component: niobium oxide hydrate sphere core and niobium pentoxide nanorods. These spiky niobium oxide nanoparticles are easily synthesized by hydrothermal treatment of niobium oxalate solution at 200 °C for 2 h, and their particle size could be tuned from 80 to 300 nm with 5–10 nm of nanorod on the surface by adjusting niobium concentration in the niobium oxalate solution. The band gap energy of the spiky nanoparticles was around 3.4 eV, and the spiky niobium oxide nanoparticles showed a light absorption in a wide wave length range from 380 to 700 nm. The niobium oxide nanoparticles are applicable as both solid acid catalyst and photocatalyst because of their spiky and two-layer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. B. Kumara and S.W. Kim: Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1, 342–355 (2012).

    Article  Google Scholar 

  2. K. Mimura and K. Kato: Enhanced dielectric properties of BaTiO3 nanocube assembled film in metal–insulator–metal capacitor structure. Appl. Phys. Express 7, 061501 (2014).

    Article  Google Scholar 

  3. K.M.L. Taylor-Pashow, J.D. Rocca, R.C. Huxford, and W. Lin: Hybrid nanomaterials for biomedical applications. Chem. Commun. 46, 5832–5849 (2010).

    Article  CAS  Google Scholar 

  4. J. Lv, T. Kako, Z. Li, Z. Zou, and J. Ye: Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles. J. Phys. Chem. C 114, 6157–6162 (2010).

    Article  CAS  Google Scholar 

  5. S. Uchida, Y. Inoue, Y. Fujishiro, and T. Sato: Hydrothermal synthesis of K4Nb6O17. J. Mater. Sci. 33, 5125 (1998).

    Article  CAS  Google Scholar 

  6. C.H. Lu, S.Y. Lo, and H.C. Lin: Hydrothermal synthesis of nonlinear optical potassium niobate ceramic powder. Mater. Lett. 34, 172–176 (1998).

    Article  CAS  Google Scholar 

  7. J.F. Liu, X.L. Li, and Y.D. Li: Novel synthesis of polymorphous nanocrystalline KNbO3 by a low temperature solution method. J. Nanosci. Nanotechnol. 2, 617 (2002).

    Article  CAS  Google Scholar 

  8. S. Lee, T. Park, G. Choi, K. Koo, and W. Kim: Effects of KOH/BaTi and Ba/Ti ratios on synthesis of BaTiO3 powder by coprecipitation/hydrothermal reaction. Mater. Chem. Phys. 82, 742 (2003).

    Article  CAS  Google Scholar 

  9. A. Sehgal, Y. Lalatonne, J-F. Berret, and M. Morvan: Precipitation-redispersion of cerium oxide nanoparticles with poly(acrylic acid): Toward stable dispersions. Langmuir 21, 9359–9364 (2005).

    Article  CAS  Google Scholar 

  10. C. Burda, X.B. Chen, R. Narayaman, and M.A. El-Sayed: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  CAS  Google Scholar 

  11. L. Zhang and Y.J. Zhu: Microwave-assisted solvothermal synthesis of AlOOH hierarchically nanostructured microspheres and their transformation to γ-Al2O3 with similar morphologies. J. Phys. Chem. C 112, 16764 (2008).

    Article  CAS  Google Scholar 

  12. Z.L. Wang and J.H. Song: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).

    Article  CAS  Google Scholar 

  13. V. Polshettiwar, B. Baruwati, and R.S. Varma: Self-assembly of metal oxides into three-dimensional nanostructures: Synthesis and application in catalysis. ACS Nano 3(3), 728–736 (2009).

    Article  CAS  Google Scholar 

  14. X. Xie, Y. Li, Z-Q. Liu, M. Haruta, and W. Shen: Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2011).

    Article  Google Scholar 

  15. Y.D. Wang, L.F. Yang, Z.L. Zhou, Y.F. Li, and X.H. Wu: Effects of calcination temperature on latice constants and gas sensing properties of Nb2O5. Mater. Lett. 49, 277 (2001).

    Article  CAS  Google Scholar 

  16. P. Carniti, A. Gervasini, and M. Marzo: Dispersed NbOx catalytic phases in silica matrixes: Influence of niobium concentration and preparative route. J. Phys. Chem. C 112, 14064 (2008).

    Article  CAS  Google Scholar 

  17. S.H. Mujawar, A.I. Inamdar, S.B. Patil, and P.S. Patil: Electrochromic properties of spray-deposited niobium oxide thin films. Solid State Ionics 177, 3333 (2006).

    Article  CAS  Google Scholar 

  18. R. Jose, V. Thavasi, and S. Ramakrishna: Metal oxides for dyesensitized solar cells. J. Am. Ceram. Soc. 92, 289 (2009).

    Article  CAS  Google Scholar 

  19. K.S. Ahn, M.S. Kang, J.K. Lee, B.C. Shin, and J.W. Lee: Enhanced electron diffusion length of mesoporous TiO2 film by using Nb2O5 energy barrier for dye-sensitized solar cells. Appl. Phys. Lett. 89, 013103 (2006).

    Article  Google Scholar 

  20. A.C. Mackey, R.L. Karlinsey, T.G. Chu, M. MacPherson, and D.L. Alge: Development of niobium oxide coatings on sand-blasted titanium alloy dental implants. Mater. Sci. Appl. 3, 301–305 (2012).

    CAS  Google Scholar 

  21. A. Llordés, G. Garcia, J. Gazquez, and D.J. Milliron: Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013).

    Article  Google Scholar 

  22. Y. Guo, K. Kakimoto, and H. Ohsato: Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3(Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121 (2004).

    Article  CAS  Google Scholar 

  23. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura: Lead-free piezoceramics. Nature 432, 84–87 (2004).

    CAS  Google Scholar 

  24. T.R. Shrout and S.J. Zhang: Lead-free piezoelectric ceramics: Alternatives for PZT?J. Electroceram. 19, 113–126 (2007).

    Article  Google Scholar 

  25. G. Vats and R. Vaish: Selection of optimal sintering temperature of K0.5Na0.5NbO3 ceramics for electromechanical applications. J. Asian Ceram. Soc. 2, 5–10 (2014).

    Article  Google Scholar 

  26. D. Mohanty, G. Chaubey, A. Yourdkhani, S. Adireddy, G. Caruntu, and J. Wiley: Synthesis and piezoelectric response of cubic and spherical LiNbO3 nanocrystals. RSC Adv. 2, 1913–1916 (2012).

    Article  CAS  Google Scholar 

  27. K. Saito and A. Kudo: Niobium-complex-based syntheses of sodium niobate nanowires possessing superior photocatalytic properties. Inorg. Chem. 49, 2017–2019 (2010).

    Article  CAS  Google Scholar 

  28. H. Zhu, Z. Zheng, X. Gao, Y. Huang, Z. Yan, J. Zou, H. Yin, Q. Zou, S.H. Kable, J. Zhao, Y. Xi, W.N. Martens, and R.L. Frost: Structural evolution in a hydrothermal reaction between Nb2O5 and NaOH solution: From Nb2O5 grains to microporous Na2Nb2O6/3H2O fibers and NaNbO3 cubes. J. Am. Chem. Soc. 128, 2373–2384 (2006).

    Article  CAS  Google Scholar 

  29. K. Nakajima, Y. Baba, R. Noma, M. Kitano, J.N. Kondo, S. Hayashi, and M. Hara: Nb2O5n H2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. J. Am. Chem. Soc. 133, 4224–4227 (2011).

    Article  CAS  Google Scholar 

  30. A.G.S. Prado, L.B. Bolzon, C.P. Pedroso, A.O. Moura, and L.L. Costa: Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Appl. Catal., B 82, 219–224 (2008).

    Article  CAS  Google Scholar 

  31. J. Wu, J. Li, X. Lü, L. Zhang, J. Yao, F. Zhang, F. Huang, and F. Xu: A one-pot method to grow pyrochlore H4Nb2O7-octahedron-based photocatalyst. J. Mater. Chem. 20, 1942–1946 (2010).

    Article  CAS  Google Scholar 

  32. H. Luo, M. Wei, and K. Wei: Synthesis of Nb2O5 nanorods by a soft chemical process. J. Nanomater. 2009, 1–4 (2009).

    Article  Google Scholar 

  33. W. Fan, Q. Zhang, W. Deng, and Y. Wang: Niobic acid nanosheets synthesized by a simple hydrothermal method as efficient brønsted acid catalysts. Chem. Mater. 25, 3277–3287 (2013).

    Article  CAS  Google Scholar 

  34. M.Y. Rafique, L. Pan, W.S. Khan, M.Z. Iqbal, H. Qiu, M.H. Farooq, M. Ellahi, and Z. Guo: Controlled synthesis, phase formation, growth mechanism, and magnetic properties of 3-D CoNi alloy microstructures composed of nanorods. CrystEngComm 15, 5314–5325 (2013).

    Article  CAS  Google Scholar 

  35. J. Yin, X. Zhao, L. Xiang, X. Xia, and Z. Zhang: Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles. Soft Matter 5, 4687–4697 (2009).

    Article  CAS  Google Scholar 

  36. Y. Ye, J. Chen, Q. Ding, D. Lin, R. Dong, L. Yang, and J. Liu: Sea-urchin-like Fe3O4@C@Ag particles: An efficient SERS substrate for detection of organic pollutants. Nanoscale 5, 5887–5895 (2013).

    Article  CAS  Google Scholar 

  37. E.R. Camargo and M. Kakihana: Low temperature synthesis of lithium niobate powders based on water-soluble niobium malato complexes. Solid State Ionics 151, 413–418 (2002).

    Article  CAS  Google Scholar 

  38. T. Murayama, J. Chen, J. Hirata, K. Matsumoto, and W. Ueda: Hydrothermal synthesis of octahedra-based layered niobium oxide and its catalytic activity as a solid acid. Catal. Sci. Technol. 4, 4250–4257 (2014).

    Article  CAS  Google Scholar 

  39. T. Fuchigami and K. Kakimoto: Synthesis of niobium pentoxide nanoparticles in single flow supercritical water. Jpn. J. Appl. Phys. 55, 10TB06 (2016).

    Article  Google Scholar 

  40. Y. Zhao, C. Eley, J. Hu, J.S. Foord, L. Ye, and H. He: Shapedependent acidity and photocatalytic activity of Nb2O5 nanocrystals with active TT (001) surface. Angew. Chem., Int. Ed. 51, 3846–3849 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruaki Fuchigami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchigami, T., Kakimoto, Ki. Spiky niobium oxide nanoparticles through hydrothermal synthesis. Journal of Materials Research 32, 3326–3332 (2017). https://doi.org/10.1557/jmr.2017.200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.200

Navigation