Skip to main content
Log in

Anisotropic surface stability of TiB2: A theoretical explanation for the easy grain coarsening

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The exaggerated grain growth, anisotropic crystallite morphology, and thermal expansion are the main reasons for the microcracking of sintered TiB2, wherein grain coarsening and anisotropic crystallite morphology are believed to be controlled by the surface stabilities of TiB2. To deeply understand the grain growth mechanism, the anisotropic stability and bonding features of TiB2 surfaces, including \(\left({11\bar 20} \right)\), two types of (0001), and three types of \(\left({10\bar 10} \right)\), are investigated by first-principles calculations. By employing the two-region modeling method, surface energies are calculated and the \(\left({11\bar 20} \right)\) surface is found to be more stable than (0001) and \(\left({10\bar 10} \right)\) surfaces. Hexagonal plate-like grain morphology is predicted. The different bonding conditions of surface Ti and B atoms contribute to the difference of surface structure relaxation between surfaces with Ti- and B-termination, which lead the B-terminated ones to be more stable. It is also found that the surface energies of TiB2 are much higher than those of ZrB2 with a similar structure, which may be responsible for the easy coarsening of TiB2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. D.M. van Wie, D.G. Drewry, E.D. King, and C.M. Hudson: The hypersonic environment: Required operation conditions and design challenges. J. Mater. Sci. 39, 5915 (2004).

    Article  Google Scholar 

  2. M.M. Opeka, I.G. Talmy, and J.A. Zaykoski: Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 39, 5887 (2004).

    Article  CAS  Google Scholar 

  3. R.G. Munro: Material properties of titanium diboride. J. Res. Natl. Inst. Stand. Technol. 105, 709 (2000).

    Article  CAS  Google Scholar 

  4. B. Basu, G.B. Raju, and A.K. Suri: Processing and properties of monolithic TiB2 based materials. Int. Mater. Rev. 51, 6 (2006).

    Article  Google Scholar 

  5. Y.C. Zhou, H.M. Xiang, Z.H. Feng, and Z.P. Li: General trends in electronic structure, stability, chemical bonding and mechanical properties of ultrahigh temperature ceramics TMB2 (TM = transition metal). J. Mater. Sci. Technol. 31, 285 (2015).

    Article  CAS  Google Scholar 

  6. T.S.R.Ch. Murthy, B. Basu, and R. Balsubramaniam: Processing and properties of TiB2 with MoSi2 sinter-additive: A first report. J. Am. Ceram. Soc. 89, 131 (2006).

    Article  CAS  Google Scholar 

  7. B. Lönnberg: Thermal expansion studies on the group IV–VII transition metal diborides. J. Less-Common Met. 141, 145 (1988).

    Article  Google Scholar 

  8. N.L. Okamoto, M. Kusakari, K. Tanaka, H. Inui, and S. Otani: Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2. Acta Mater. 58, 76 (2010).

    Article  CAS  Google Scholar 

  9. H.M. Xiang, Z.H. Feng, Z.P. Li, and Y.C. Zhou: Temperature-dependence of structural and mechanical properties of TiB2: A first principle investigation. J. Appl. Phys. 117, 225902 (2015).

    Article  Google Scholar 

  10. A.G. Evans: Microfracture from thermal expansion anisotropy: I. Single phase systems. Acta Metall. 6, 1845 (1978).

    Article  Google Scholar 

  11. B. Liu, V.R. Cooper, Y.W. Zhang, and W.J. Weber: Segregation and trapping of oxygen vacancies near the SrTiO3 Σ3 (112) [110] tilt grain boundary. Acta Mater. 90, 394 (2015).

    Article  CAS  Google Scholar 

  12. Y.H. Zhang, B. Liu, and J.Y. Wang: Self-assemble of carbon vacancies in sub-stoichiometric ZrC1−x. Sci. Rep. 5, 18098 (2015).

    Article  CAS  Google Scholar 

  13. Y.F. Han, Y.B. Dai, D. Shu, J. Wang, and B.D. Sun: First-principles study of TiB2(0001) surfaces. J. Phys.: Condens. Matter 18, 4197 (2006).

    CAS  Google Scholar 

  14. G. Volonakis, L. Tsetseris, and S. Logothetidis: Electronic and structural properties of TiB2: Bulk, surface, and nanoscale effects. Mater. Sci. Eng., B 176, 484 (2011).

    Article  CAS  Google Scholar 

  15. S.H. Kang and D.J. Kim: Synthesis of nano-titanium diboride powders by carbothermal reduction. J. Eur. Ceram. Soc. 27, 715 (2007).

    Article  CAS  Google Scholar 

  16. L. Bača and N. Stelzer: Adapting of sol–gel process for preparation of TiB2 powder from low-cost precursors. J. Eur. Ceram. Soc. 28, 907 (2008).

    Article  Google Scholar 

  17. B. Shahbahrami, F.G. Fard, and A. Sedghi: The effect of processing parameters in the carbothermal synthesis of titanium diboride powder. Adv. Powder Technol. 23, 234 (2012).

    Article  CAS  Google Scholar 

  18. R.E. Newnham: Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, New York, USA, 2005); p. 358.

    Google Scholar 

  19. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002).

    Article  CAS  Google Scholar 

  20. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B: Condens. Matter Mater. Phys. 41, 7892 (1990).

    Article  CAS  Google Scholar 

  21. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  22. J.D. Pack and H.J. Monkhorst: “Special points for Brillouin-zone integrations”–A reply. Phys. Rev. B: Condens. Matter Mater. Phys. 16, 1748 (1977).

    Article  Google Scholar 

  23. B.G. Pfrommer, M. Côté, S.G. Louie, and M.L. Cohen: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233 (1997).

    Article  CAS  Google Scholar 

  24. P. Vajeeston, P. Ravindran, C. Ravi, and R. Asokamani: Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 045115 (2001).

    Article  Google Scholar 

  25. J.D. Gale and A.L. Rohl: The general utility lattice program (GULP). Mol. Simul. 29, 291 (2003).

    Article  CAS  Google Scholar 

  26. W. Sun, J.C. Liu, H.M. Xiang, and Y.C. Zhou: A theoretical investigation on the anisotropic surface stability and oxygen adsorption behavior of ZrB2. J. Am. Ceram. Soc. 99, 4113 (2016).

    Article  CAS  Google Scholar 

  27. W.M. Wang, Z.Y. Fu, H. Wang, and R.Z. Yuan: Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics. J. Eur. Ceram. Soc. 22, 1045 (2002).

    Article  CAS  Google Scholar 

  28. M.K. Ferber, P.F. Becher, and C.B. Finch: Effect of microstructure on the properties of TiB2 ceramics. J. Am. Ceram. Soc. 66, C–2 (1983).

    Article  Google Scholar 

  29. Z. Fan, Z.X. Guo, and B. Cantor: The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs. Composites, Part A 28, 131 (1997).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences Foundation of China under Grant No. U1435206 and No. 51672064, and Beijing Municipal Science & Technology Commission under Grant number Z151100003315012 and D161100002416001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Xiang, H., Dai, FZ. et al. Anisotropic surface stability of TiB2: A theoretical explanation for the easy grain coarsening. Journal of Materials Research 32, 2755–2763 (2017). https://doi.org/10.1557/jmr.2017.147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.147

Navigation